Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation

Author(s):  
Scott Bair ◽  
M. M. Khonsari

Exact, closed form one-dimensional Reynolds equations are presented for the Ostwald-DeWaele model, Ellis model, Spriggs model and the double-Newtonian Rabinowitsch and Ferry models. From numerical solutions for flow rate, an approximate Reynolds-Carreau equation is obtained.

Author(s):  
S. Elhanafi ◽  
K. Farhang

This paper considers leakage in mechanical seals under hydrostatic operating condition. A contact model based on the Greenwood and Williamson contact of rough surfaces is developed for treating problems involving mechanical seals in which both the micron scale roughness of the seal face and its macro scale profile are used to obtain either a closed-form equation or a nonlinear equation relating mean plane separation to the mass flow rate. The equations involve the micron scale geometry of the rough surfaces and physical parameter of the seal and carriage. Under hydrostatic condition, it is shown that there is an approximate closed-form solution in which mass flow rate in terms of the mean plane separation, or alternatively, the mean plane separation in terms of the leakage mass flow rate is found. Equations pertaining to leakage in nominally flat seal macro profile is considered and closed form equation relating to leakage flow rate to pressure difference is obtained that contain macro and micron geometries of the seal.


2010 ◽  
Vol 4 (1) ◽  
pp. 77-82 ◽  
Author(s):  
P. B. Rutkevich ◽  
P. P. Rutkevych

Abstract. Tornado vortex is believed to be essentially nonlinear phenomenon; and the puzzle to choose the nonlinear term(s) responsible for its formation is still unresolved. In the present work we consider the nonlinear term associated with atmosphere humidity, by introducing variable temperature gradient depending on the vertical velocity of the fluid. Such term is able to yield energy to the system and is very suitable for such a problem. Other nonlinear terms are neglected, assuming slow rotation, or in other words a "weak" tornado approximation. We consider one-dimensional radial boundary problem, and use a modificaiton of shooting method to satisfy boundary conditions at large radii. Obtained numerical solutions of the nonlinear differential equation qualitatively agree with the observed atmosphere vortices (tornados, tropical cyclones). The obtained results show general possibility of existence of unstable motion even in convectively stable atmosphere stratification.


1999 ◽  
Author(s):  
Alexander V. Kasharin ◽  
Jens O. M. Karlsson

Abstract The process of diffusion-limited cell dehydration is modeled for a planar system by writing the one-dimensional diffusion-equation for a cell with moving, semipermeable boundaries. For the simplifying case of isothermal dehydration with constant diffusivity, an approximate analytical solution is obtained by linearizing the governing partial differential equations. The general problem must be solved numerically. The Forward Time Center Space (FTCS) and Crank-Nicholson differencing schemes are implemented, and evaluated by comparison with the analytical solution. Putative stability criteria for the two algorithms are proposed based on numerical experiments, and the Crank-Nicholson method is shown to be accurate for a mesh with as few as six nodes.


1976 ◽  
Vol 18 (5) ◽  
pp. 234-238 ◽  
Author(s):  
D. H. McQueen

The one-dimensional equations of surge in centrifugal compressors are solved graphically for the pressure head and mass flow rate as functions of time for a variety of situations, and the results are discussed in terms of the acoustical properties of the external piping. Two important parameters affecting the nature of the surge limit cycle are found to be simply related to the acoustic capacitance and acoustic inductance of the system.


1995 ◽  
Vol 117 (1) ◽  
pp. 156-165 ◽  
Author(s):  
L. L. Howell ◽  
A. Midha

Geometric nonlinearities often complicate the analysis of systems containing large-deflection members. The time and resources required to develop closed-form or numerical solutions have inspired the development of a simple method of approximating the deflection path of end-loaded, large-deflection cantilever beams. The path coordinates are parameterized in a single parameter called the pseudo-rigid-body angle. The approximations are accurate to within 0.5 percent of the closed-form elliptic integral solutions. A physical model is associated with the method, and may be used to simplify complex problems. The method proves to be particularly useful in the analysis and design of compliant mechanisms.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012076
Author(s):  
A Shobukhov ◽  
H Koibuchi

Abstract We propose a one-dimensional model for the dilute aqueous solution of NaCl which is treated as an incompressible fluid placed in the external electric field. This model is based on the Poisson-Nernst-Planck system of equations, which also contains the constant flow velocity as a parameter and considers the dissociation and the recombination of ions. We study the steady-state solution analytically and prove that it is a stable equilibrium. Analyzing the numerical solutions, we demonstrate the importance of dissociation and recombination for the physical meaningfulness of the model.


1968 ◽  
Vol 35 (3) ◽  
pp. 588-595 ◽  
Author(s):  
S. Tsao

Equations governing the damped wave propagation along transmission lines are obtained from the Navier-Stokes and energy equations by making certain simplifying assumptions. The flow considered is essentially one-dimensional. However, radial variations of the velocity and temperature profiles must be considered, because the damping factor is directly dependent on them. The equations are integrated by numerical methods. A hypothetical case is computed as an example.


Author(s):  
Weitao Yang ◽  
Jin Xu

Most analytical and semi-analytical models for pumping-induced land subsidence invoke the simplifying assumptions regarding characteristics of geomaterials, as well as the pattern of drawdown response to pumping. This paper presents an analytical solution for one-dimensional consolidation of the multilayered soil due to groundwater drawdown, in which viscoelastic property and time-dependent drawdown are taken into account. The presented solution is developed by using the boundary transformation techniques. The validity of the proposed solution is verified by comparing with a degenerated case for a single layer, as well as with the numerical solutions and experimental results for a two-layer system. The difference between the average consolidation degree Up defined by hydraulic head and that Us defined by total settlement is discussed. The detailed parametric studies are conducted to reveal the effects of viscoelastic properties and drawdown patterns on the consolidation process. It is revealed that while the effect of different drawdown response patterns is significant during the early-intermediate stages of consolidation, the viscoelastic properties may have a more dominant influence on long-term consolidation behavior, depending on the values of the material parameters, which are reflected in both the deformation process of soil layers and the dissipation of excess pore-water pressure.


Sign in / Sign up

Export Citation Format

Share Document