Temperature-stable quartz oscillator and its applications in pressure gauges, gas sensing, and gas concentration measurements

2016 ◽  
Vol 34 (3) ◽  
pp. 031604 ◽  
Author(s):  
Atsushi Suzuki
1986 ◽  
Vol 25 (13) ◽  
pp. 2115 ◽  
Author(s):  
J. Douglas Houston ◽  
Sebastian Sizgoric ◽  
Arkady Ulitsky ◽  
John Banic

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 626
Author(s):  
Seokhun Kwon ◽  
Seokwon Lee ◽  
Joouk Kim ◽  
Chulmin Park ◽  
Hosung Jung ◽  
...  

Recently, as air pollution and particulate matter worsen, the importance of a platform that can monitor the air environment is emerging. Especially, among air pollutants, nitrogen dioxide (NO2) is a toxic gas that can not only generate secondary particulate matter, but can also derive numerous toxic gases. To detect such NO2 gas at low concentration, we fabricated a GNWs/NiO-WO3/GNWs heterostructure-based gas sensor using microwave plasma-enhanced chemical vapor deposition (MPECVD) and sputter, and we confirmed the NO2 detection characteristics between 10 and 50 ppm at room temperature. The morphology and carbon lattice characteristics of the sensing layer were investigated using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. In the gas detection measurement, the resistance negative change according to the NO2 gas concentration was recorded. Moreover, it reacted even at low concentrations such as 5–7 ppm, and showed excellent recovery characteristics of more than 98%. Furthermore, it also showed a change in which the reactivity decreased with respect to humidity of 33% and 66%.


2019 ◽  
Vol 33 (14) ◽  
pp. 1950143 ◽  
Author(s):  
Elham Mansouri ◽  
Javad Karamdel ◽  
Mohammad Taghi Ahmadi ◽  
Masoud Berahman

Phosphorene is a new two-dimensional material that has great potentials in Nano electronic application, so it has attracted more researchers’ attention nowadays. Indeed, phosphorene is an interesting material in gas sensing, due to its high surface-to-volume ratio and its carrier mobility. Many studies have been reported on phosphorene gas sensing, but there is not enough study on analytical modeling of phosphorene gas sensing properties. In this research, by adopting data from experimental NO2-based gas sensor, an analytical model of the phosphorene gas sensing behavior is presented. Then, the experimental results of NO2 gas sensing are compared with the proposed model and acceptable agreement is reported. This new model is adapted to predict phosphorene gas sensing performance in higher NO2 gas concentrations, which demonstrates, linear relation is established in higher concentrations same as lower ppb NO2 gas concentration. So, we have predicted the result of NO2 gas sensing for higher concentration based on experimental sensing.


Sign in / Sign up

Export Citation Format

Share Document