Sample tilting mechanism and transfer system for high‐temperature thin‐film deposition and ultrahigh vacuum photoelectron emission microscopy

1993 ◽  
Vol 11 (2) ◽  
pp. 461-463 ◽  
Author(s):  
Adrian Garcia ◽  
Martin E. Kordesch
1987 ◽  
Vol 97 ◽  
Author(s):  
T. L. Aselage

ABSTRACTBoron-rich refractory solids based on the rhombohedral structure of α-B exhibit electrical properties that range from a hopping-type semiconductor (boron carbide) to wide bandgap room temperature insulators (the boron pnictides B6P and B6As). As such, they are of interest for a variety of high temperature semiconductor applications. Preparation techniques for these unusual materials are reviewed, and new results on the crystal growth of boron carbides and B6As and on thin film deposition of B6P are presented.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (11) ◽  
pp. 29-36 ◽  
Author(s):  
Theodore D. Moustakas

Molecular Beam Epitaxy (MBE) is a thin film deposition process in which thermal beams of atoms or molecules react on the clean surface of a single-crystalline substrate, held at high temperatures under ultrahigh vacuum conditions, to form an epitaxial film. Thus, contrary to the CVD processes described in the other articles, the MBE process is a physical method of thin film deposition.The vacuum requirements for the MBE process are typically better than 10−10torr. This makes it possible to grow epitaxial films with high purity and excellent crystal quality at relatively low substrate temperatures. Additionally, the ultrahigh vacuum environment allows the study of surface, interface, and bulk properties of the growing film in real time, by employing a variety of structural and analytical probes.Although the MBE deposition process was first proposed by Günther in 1958, its implementation had to wait for the development of the ultrahigh vacuum technology. In 1968 Davey and Pankey successfully grew epitaxial GaAs films by the MBE process. At the same time Arthur's work on the kinetics of GaAs growth laid the groundwork for the growth of high quality MBE films of GaAs and other III-V compounds by Arthur and LePore and Cho.


Sign in / Sign up

Export Citation Format

Share Document