Three-dimensional micro-optical switching system architecture using slab-waveguide-based micro-optical switches

2003 ◽  
Vol 42 (2) ◽  
pp. 439 ◽  
Author(s):  
Tetsuzo Yoshimura
2002 ◽  
Author(s):  
Tetsuzo Yoshimura ◽  
Satoshi Tsukada ◽  
Shinji Kawakami ◽  
Yukihiro Arai ◽  
Hiroaki Kurokawa ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (22) ◽  
pp. 13183-13192
Author(s):  
Jacqueline M. Cole ◽  
David J. Gosztola ◽  
Sven O. Sylvester

Single crystals that behave as optical switches are desirable for a wide range of applications, from optical sensors to read–write memory media.


2001 ◽  
Vol 694 ◽  
Author(s):  
C. Tapalian ◽  
J.-P. Laine ◽  
P. A. Lane

AbstractWe report optical switching by a silica microsphere optical resonator coated by a conjugated polymer. Microspheres were fabricated by melting the tip of an optical fiber and coated by dipping in a 1 mg/ml toluene solution of poly(2,5-dioctyloxy-1,4-phenylenevinylene) (DOO-PPV). The resonator properties were characterized by evanescently coupling 1.55 µm light propagating along a stripline-pedestal anti-resonant reflecting optical waveguide into optical whispering gallery modes (WGMs). WGM linewidths less than 2 MHz were measured, corresponding to cavity Q > 108. WGM resonant frequency shifts as large as 3.2 GHz were observed when 405 nm pump light with a power density of ~100 mW/cm2 was incident on the microsphere. The time constant of the observed frequency shifts is approximately 0.165 seconds, leading us to attribute the frequency shift to thermo-optic effects. Such a system should be capable of thermo-optically switching at speeds on the order of 10 kHz.


2018 ◽  
Vol 10 (6) ◽  
pp. 168781401878363 ◽  
Author(s):  
Nien-Tsu Hu ◽  
Pu-Sheng Tsai ◽  
Ter-Feng Wu ◽  
Jen-Yang Chen ◽  
Lin Lee

This article explores the construction of a geometric virtual reality platform for the environmental navigation. Non-panoramic photos and wearable electronics with Bluetooth wireless transmission functions are used to combine the user’s actions with the virtual reality environment in a first-person virtual reality platform. The 3ds Max animation software is used to create three-dimensional models of real buildings. These models are combined with the landscape models in Unity3d to create a virtual campus scene that matches real landscape. The wearable device included an ATMega168 chip as a microcontroller; it was connected to a three-axis accelerometer, a gyroscope, and a Bluetooth transmitter to detect and transmit various movements of the user. Although the development of the mechatronics, software, and engineering involved in the three-dimensional animation are the main objective, we believe that the methods and techniques can be modified for various purposes. After the system architecture was created and the operations of the platform were verified, wearable devices and virtual reality scenes are concluded to be able to be used together seamlessly.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 665 ◽  
Author(s):  
Zhongyi Guo ◽  
Xiaoru Nie ◽  
Fei Shen ◽  
Hongping Zhou ◽  
Qingfeng Zhou ◽  
...  

As a new field of optical communication technology, on-chip graphene devices are of great interest due to their active tunability and subwavelength scale. In this paper, we systematically investigate optical switches at frequency of 30 THz, including Y-branch (1 × 2), X-branch (2 × 2), single-input three-output (1 × 3), two-input three-output (2 × 3), and two-input four-output (2 × 4) switches. In these devices, a graphene monolayer is stacked on the top of a PMMA (poly methyl methacrylate methacrylic acid) dielectric layer. The optical response of graphene can be electrically manipulated; therefore, the state of each channel can be switched ON and OFF. Numerical simulations demonstrate that the transmission direction can be well manipulated in these devices. In addition, the proposed devices possess advantages of appropriate ON/OFF ratios, indicating the good performance of graphene in terahertz switching. These devices provide a new route toward terahertz optical switching.


Sign in / Sign up

Export Citation Format

Share Document