scholarly journals Solar system science with the Wide-Field Infrared Survey Telescope

Author(s):  
Bryan J. Holler ◽  
Stefanie N. Milam ◽  
James M. Bauer ◽  
Charles Alcock ◽  
Michele T. Bannister ◽  
...  
2011 ◽  
Vol 731 (1) ◽  
pp. 53 ◽  
Author(s):  
A. Mainzer ◽  
J. Bauer ◽  
T. Grav ◽  
J. Masiero ◽  
R. M. Cutri ◽  
...  

2017 ◽  
Vol 17 (2) ◽  
pp. 112-115 ◽  
Author(s):  
Z. Osmanov

AbstractIn the previous paper ring (Osmanov 2016) (henceforth Paper-I) we have extended the idea of Freeman Dyson and have shown that a supercivilization has to use ring-like megastructures around pulsars instead of a spherical shell. In this work we reexamine the same problem in the observational context and we show that facilities of modern infrared (IR) telescopes (Very Large Telescope Interferometer and Wide-field Infrared Survey Explorer (WISE)) might efficiently monitor the nearby zone of the solar system and search for the IR Dyson-rings up to distances of the order of 0.2 kpc, corresponding to the current highest achievable angular resolution, 0.001 mas. In this case the total number of pulsars in the observationally reachable area is about 64 ± 21. We show that pulsars from the distance of the order of ~ 1 kpc are still visible for WISE as point-like sources but in order to confirm that the object is the neutron star, one has to use the ultraviolet telescopes, which at this moment cannot provide enough sensitivity.


2009 ◽  
Vol 105 (2-4) ◽  
pp. 101-105 ◽  
Author(s):  
R. L. Jones ◽  
◽  
S. R. Chesley ◽  
A. J. Connolly ◽  
A. W. Harris ◽  
...  
Keyword(s):  

2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.


Author(s):  
Joshua Fitzmaurice ◽  
Donald Bédard ◽  
Chris H. Lee ◽  
Patrick Seitzer
Keyword(s):  

2016 ◽  
Vol 12 (S325) ◽  
pp. 253-258
Author(s):  
R. A. Street

AbstractDespite a flood of discoveries over the last ~ 20 years, our knowledge of the exoplanet population is incomplete owing to a gap between the sensitivities of different detection techniques. However, a census of exoplanets at all separations from their host stars is essential to fully understand planet formation mechanisms. Microlensing offers an effective way to bridge the gap around 1–10 AU and is therefore one of the major science goals of the Wide Field Infrared Survey Telescope (WFIRST) mission. WFIRST’s survey of the Galactic Bulge is expected to discover ~ 20,000 microlensing events, including ~ 3000 planets, which represents a substantial data analysis challenge with the modeling software currently available. This paper highlights areas where further work is needed. The community is encouraged to join new software development efforts aimed at making the modeling of microlensing events both more accessible and rigorous.


2019 ◽  
Vol 485 (3) ◽  
pp. 3169-3184 ◽  
Author(s):  
Vaishali Parkash ◽  
Michael J I Brown ◽  
T H Jarrett ◽  
A Fraser-McKelvie ◽  
M E Cluver

Abstract We present a sample of 91 H i galaxies with little or no star formation, and discuss the analysis of the integral field unit (IFU) spectra of 28 of these galaxies. We identified H i galaxies from the H i Parkes All-Sky Survey Catalog (HICAT) with Wide-field Infrared Survey Explorer (WISE) colours consistent with low specific star formation (<10−10.4 yr−1), and obtained optical IFU spectra with the Wide-Field Spectrograph (WiFeS). Visual inspection of the PanSTARRS, Dark Energy Survey, and Carnegie-Irvine imaging of 62 galaxies reveals that at least 32 galaxies in the sample have low levels of star formation, primarily in arms/rings. New IFU spectra of 28 of these galaxies reveals 3 galaxies with central star formation, 1 galaxy with low-ionization nuclear emission-line regions (LINERs), 20 with extended low-ionization emission-line regions (LIERs), and 4 with high excitation Seyfert (Sy) emission. From the spectroscopic analysis of H i selected galaxies with little star formation, we conclude that 75 per cent of this population are LINERs/LIERs.


Sign in / Sign up

Export Citation Format

Share Document