scholarly journals Extinction-free Census of AGNs in the AKARI/IRC North Ecliptic Pole Field from 23-band infrared photometry from Space Telescopes

2020 ◽  
Vol 499 (3) ◽  
pp. 4068-4081 ◽  
Author(s):  
Ting-Wen Wang ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Tetsuya Hashimoto ◽  
Denis Burgarella ◽  
...  

ABSTRACT In order to understand the interaction between the central black hole and the whole galaxy or their co-evolution history along with cosmic time, a complete census of active galactic nucleus (AGN) is crucial. However, AGNs are often missed in optical, UV, and soft X-ray observations since they could be obscured by gas and dust. A mid-infrared (MIR) survey supported by multiwavelength data is one of the best ways to find obscured AGN activities because it suffers less from extinction. Previous large IR photometric surveys, e.g. Wide field Infrared Survey Explorer and Spitzer, have gaps between the MIR filters. Therefore, star-forming galaxy-AGN diagnostics in the MIR were limited. The AKARI satellite has a unique continuous nine-band filter coverage in the near to MIR wavelengths. In this work, we take advantage of the state-of-the-art spectral energy distribution modelling software, cigale, to find AGNs in MIR. We found 126 AGNs in the North Ecliptic Pole-Wide field with this method. We also investigate the energy released from the AGN as a fraction of the total IR luminosity of a galaxy. We found that the AGN contribution is larger at higher redshifts for a given IR luminosity. With the upcoming deep IR surveys, e.g. JWST, we expect to find more AGNs with our method.

2020 ◽  
Vol 500 (4) ◽  
pp. 5024-5042
Author(s):  
Nagisa Oi ◽  
Tomotsugu Goto ◽  
Hideo Matsuhara ◽  
Yousuke Utsumi ◽  
Rieko Momose ◽  
...  

ABSTRACT We present a five-broad-band (grizy) photometric catalogue of Subaru/Hyper Suprime-Cam (HSC) optical imaging observations at around the North Ecliptic Pole (NEP) where the AKARI infrared (IR) satellite conducted a large survey (NEP-Wide survey). The observations cover almost all the NEP-Wide survey field down to the depth of 28.1, 26.8, 26.3, 25.5, and 25.0 mag (5σ) at grizy, respectively. The five-band HSC catalogue contains about 2.6 million objects, and 70 959 AKARI NEP-Wide counterpart sources are identified in the catalogue. We added existing supplementary catalogues from the u band to the far-IR band, and estimated photo-z for the AKARI-HSC sources. We achieved σΔz/(1 + zs) = 0.06 and an outlier rate of 13.4 per cent at z = 0.2–1.5. Using the spectral energy distribution (SED) template fitting, we classified the AKARI-HSC galaxies into four categories, namely quiescent, star-forming, Type1 active galactic nucleus (AGN), and Type2 AGN, in each redshift bin. At z > 1, the mean SED of star-forming galaxies in mid-IR (3–10 μm) range is significantly different from that of spiral galaxies in the nearby Universe, indicating that many of star-forming galaxies at z > 1 contain a heat source capable of heating dust to temperatures that radiate thermal emission in the mid-IR range. Furthermore, we estimated the number fraction of AGNs (fAGN) in each bin of redshift and IR luminosity (LIR), and examined the dependence of redshift and LIR. In log(LIR/L⊙) = 11.0–14.0, the fAGN shows a significant increase with increasing redshift, regardless of the LIR bins. In contrast, the fAGN shows a slight increase against LIR at z < 1 and no increase with increasing LIR at z > 1.


Author(s):  
Bo Han Chen ◽  
Tomotsugu Goto ◽  
Seong Jin Kim ◽  
Ting Wen Wang ◽  
Daryl Joe D Santos ◽  
...  

Abstract To understand the cosmic accretion history of supermassive black holes, separating the radiation from active galactic nuclei (AGNs) and star-forming galaxies (SFGs) is critical. However, a reliable solution on photometrically recognising AGNs still remains unsolved. In this work, we present a novel AGN recognition method based on Deep Neural Network (Neural Net; NN). The main goals of this work are (i) to test if the AGN recognition problem in the North Ecliptic Pole Wide (NEPW) field could be solved by NN; (ii) to shows that NN exhibits an improvement in the performance compared with the traditional, standard spectral energy distribution (SED) fitting method in our testing samples; and (iii) to publicly release a reliable AGN/SFG catalogue to the astronomical community using the best available NEPW data, and propose a better method that helps future researchers plan an advanced NEPW database. Finally, according to our experimental result, the NN recognition accuracy is around 80.29% - 85.15%, with AGN completeness around 85.42% - 88.53% and SFG completeness around 81.17% - 85.09%.


2020 ◽  
Vol 643 ◽  
pp. A97
Author(s):  
O. Miettinen

Context. Physically unassociated background or foreground objects seen towards submillimetre sources are potential contaminants of both the studies of young stellar objects embedded in Galactic dust clumps and multiwavelength counterparts of submillimetre galaxies (SMGs). Aims. We aim to search for and characterise the properties of a potential extragalactic object seen in projection towards a Galactic dust clump. Methods. We employed the near-infrared (3.4 μm and 4.6 μm) and mid-infrared (12 μm and 22 μm) data from the Wide-field Infrared Survey Explorer (WISE) and the submillimetre data from the Planck satellite. Results. We uncovered a source, namely the WISE source J044232.92+322734.9 (hereafter J044232.92), which is detected in the W1–W3 bands of WISE, but undetected at 22 μm (W4), and whose WISE infrared (IR) colours suggest that it is a star-forming galaxy (SFG). This source is seen in projection towards the Planck-detected dust clump PGCC G169.20-8.96, which likely belongs to the Taurus-Auriga cloud complex, at a distance of 140 pc. We used the MAGPHYS+photo-z spectral energy distribution (SED) code to derive the photometric redshift and physical properties of J044232.92. The redshift was derived to be zphot = 1.132−0.165+0.280, while, for example, the stellar mass, IR (8–1000 μm) luminosity, and star formation rate were derived to be M⋆ = 4.6−2.5+4.7 × 1011 M⊙, LIR = 2.8−1.5+5.7 × 1012 L⊙, and SFR = 191−146+580 M⊙ yr−1 (or 281−155+569 M⊙ yr−1 when estimated from the IR luminosity). The derived value of LIR suggests that J044232.92 could be an ultraluminous IR galaxy, and we found that it is consistent with a main sequence SFG at a redshift of 1.132. Conclusions. The estimated physical properties of J044232.92 are comparable to those of SMGs, except that the derived stellar mass of J044232.92 appears somewhat higher (by a factor of 4–5) than the average stellar masses of SMGs. However, the stellar mass difference could just reflect the poorly sampled SED in the ultraviolet, optical, and near-IR regimes. Indeed, the SED of J044232.92 could not be well constrained using the currently available data (WISE only), and hence the derived redshift of the source and its physical properties should be taken as preliminary estimates. Further observations, in particular high-resolution (sub-)millimetre and radio continuum imaging, are needed to better constrain the redshift and physical properties of J044232.92 and to see if the source really is a galaxy seen through a Galactic dust clump, in particular an SMG population member at z ∼ 1.1.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Nanako Kato ◽  
Yoshiki Matsuoka ◽  
Masafusa Onoue ◽  
Shuhei Koyama ◽  
Yoshiki Toba ◽  
...  

Abstract We present the first discovery of dust-reddened quasars (red quasars) in the high-z universe (z > 5.6). This is a result from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which is based on the sensitive multi-band optical imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We identified four red quasar candidates from the 93 spectroscopically confirmed high-z quasars in the SHELLQs sample, based on detections in the Wide-field Infrared Survey Explorer (WISE) data at 3.4 and 4.6 μm (rest-frame ∼5000–6500 Å). The amount of dust reddening was estimated with spectral energy distribution (SED) fits over optical and mid-infrared wavelengths. Two of the four candidates were found to be red quasars with dust reddening of E(B − V) > 0.1. The remaining SHELLQs quasars without individual WISE detections are significantly fainter in the WISE bands and bluer than the red quasars, although we did detect them in the W1 band in a stacked image. We also conducted the same SED fits for high-z optically-luminous quasars, but no red quasar was found. This demonstrates the power of Subaru HSC to discover high-z red quasars, which are fainter than the limiting magnitudes of past surveys in the rest-frame ultraviolet, due to dust extinction.


2019 ◽  
Vol 15 (S341) ◽  
pp. 172-176
Author(s):  
Takamitsu Miyaji ◽  

AbstractThe infrared Astronomical Satellite AKARI conducted deep (∼0.4 deg2) and wide (∼ 5.4 deg2) surveys around the North Ecliptic Pole (NEP) with its InfraRed Camera (IRC) with nine filters continuously covering the 2–25 μm range. These photometric bands include three filters that fill the “ Spitzer gap” between the wavelength coverages of IRAC and MIPS. This unique feature has enabled us to make sensitive mid-infrared detection of AGN candidates at z∼1-2, based on the Spectral Energy Distribution (SED) fitting including hot dust emission in the AGN torus. This enables us to compare X-rays and the AGN torus component of the infrared emission to help us identify highly absorbed AGNs, including Compton-thick ones. We report our results of the Chandra observation of the AKARI NEP Deep Field and discuss the prospects for upcoming Spectrum-RG (eROSITA+ART-XC) on the AKARI Wide field.


2019 ◽  
Vol 621 ◽  
pp. A52 ◽  
Author(s):  
A. Lumbreras-Calle ◽  
C. Muñoz-Tuñón ◽  
J. Méndez-Abreu ◽  
J. M. Mas-Hesse ◽  
P. G. Pérez-González ◽  
...  

Context. The physical processes driving the evolution of star formation (SF) in galaxies over cosmic time still present many open questions. Recent galaxy surveys allow now to study these processes in great detail at intermediate redshift (0 ≤ z ≤ 0.5). Aims. We build a complete sample of star-forming galaxies and analyze their properties, reaching systems with low stellar masses and low star formation rates (SFRs) at intermediate-to-low redshift. Methods. We use data from the SHARDS multiband survey in the GOODS-North field. Its depth (up to magnitude ⟨m3σ⟩~ 26.5) and its spectro-photometric resolution (R ~ 50) provides us with an ideal dataset to search for emission line galaxies (ELGs). We develop a new algorithm to identify low-redshift (z < 0.36) ELGs by detecting the [OIII]5007 and Hα emission lines simultaneously. We fit the spectral energy distribution (SED) of the selected sample, using a model with two single stellar populations. Results. We find 160 star-forming galaxies for which we derive equivalent widths (EWs) and absolute fluxes of both emission lines. We detect EWs as low as 12 Å, with median values for the sample of ~35 Å in [OIII]5007 and ~56 Å in Hα, respectively. Results from the SED fitting show a young stellar population with low median metallicity (36% of the solar value) and extinction (AV ~ 0.37), with median galaxy stellar mass ~108.5 M⊙. Gas-phase metallicities measured from available spectra are also low. ELGs in our sample present bluer colours in the UVJ plane than the median colour-selected star-forming galaxy in SHARDS. We suggest a new V-J colour criterion to separate ELGs from non-ELGs in blue galaxy samples. In addition, several galaxies present high densities of O-type stars, possibly producing galactic superwinds, which makes them interesting targets for follow-up spectroscopy. Conclusions. We have demonstrated the efficiency of SHARDS in detecting low-mass ELGs (~2 magnitudes deeper than previous spectroscopic surveys in the same field). The selected sample accounts for 20% of the global galaxy population at this redshift and luminosity, and is characterized by young SF bursts with sub-solar metallicities and low extinction. However, robust fits to the full SEDs can only be obtained including an old stellar population, suggesting the young component is built up by a recent burst of SF in an otherwise old galaxy.


2020 ◽  
Vol 641 ◽  
pp. A129 ◽  
Author(s):  
L. Barrufet ◽  
C. Pearson ◽  
S. Serjeant ◽  
K. Małek ◽  
I. Baronchelli ◽  
...  

Context. Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Universe. Aims. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxies, the well-known correlation between stellar mass and SFR. We aim to understand the causes of their high star formation and quantify the percentage of DSFGs that lie above the MS. Methods. We adopted a multi-wavelength approach with data from optical to submillimetre wavelengths from surveys at the North Ecliptic Pole to study a submillimetre sample of high-redshift galaxies. Two submillimetre selection methods were used, including: sources selected at 850 μm with the Sub-millimetre Common-User Bolometer Array 2) SCUBA-2 instrument and Herschel-Spectral and Photometric Imaging Receiver (SPIRE) selected sources (colour-colour diagrams and 500 μm risers), finding that 185 have good multi-wavelength coverage. The resulting sample of 185 high-z candidates was further studied by spectral energy distribution fitting with the CIGALE fitting code. We derived photometric redshifts, stellar masses, SFRs, and additional physical parameters, such as the infrared luminosity and active galactic nuclei (AGN) contribution. Results. We find that the Herschel-SPIRE selected DSFGs generally have higher redshifts (z = 2.57−0.09+0.08) than sources that are selected solely by the SCUBA-2 method (z = 1.45−0.06+0.21). We find moderate SFRs (797−50+108 M⊙ yr−1), which are typically lower than those found in other studies. We find that the different results in the literature are, only in part, due to selection effects, as even in the most extreme cases, SFRs are still lower than a few thousand solar masses per year. The difference in measured SFRs affects the position of DSFGs on the MS of galaxies; most of the DSFGs lie on the MS (60%). Finally, we find that the star formation efficiency (SFE) depends on the epoch and intensity of the star formation burst in the galaxy; the later the burst, the more intense the star formation. We discuss whether the higher SFEs in DSFGs could be due to mergers.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z &lt; 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages &lt; 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of &lt;0.1 dex.


Sign in / Sign up

Export Citation Format

Share Document