Activation ensemble generative adversarial network transfer learning for image classification

2021 ◽  
Vol 30 (01) ◽  
Author(s):  
Xinyue Wang ◽  
Chengyuan Zhao ◽  
Jun Jiang ◽  
Mingliang Gao ◽  
Zheng Liu
Author(s):  
Xiaoxue Li ◽  
Rongxin Lv ◽  
Yanzhen Yin ◽  
Kangkang Xin ◽  
Zeyuan Liu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4365
Author(s):  
Kwangyong Jung ◽  
Jae-In Lee ◽  
Nammoon Kim ◽  
Sunjin Oh ◽  
Dong-Wook Seo

Radar target classification is an important task in the missile defense system. State-of-the-art studies using micro-doppler frequency have been conducted to classify the space object targets. However, existing studies rely highly on feature extraction methods. Therefore, the generalization performance of the classifier is limited and there is room for improvement. Recently, to improve the classification performance, the popular approaches are to build a convolutional neural network (CNN) architecture with the help of transfer learning and use the generative adversarial network (GAN) to increase the training datasets. However, these methods still have drawbacks. First, they use only one feature to train the network. Therefore, the existing methods cannot guarantee that the classifier learns more robust target characteristics. Second, it is difficult to obtain large amounts of data that accurately mimic real-world target features by performing data augmentation via GAN instead of simulation. To mitigate the above problem, we propose a transfer learning-based parallel network with the spectrogram and the cadence velocity diagram (CVD) as the inputs. In addition, we obtain an EM simulation-based dataset. The radar-received signal is simulated according to a variety of dynamics using the concept of shooting and bouncing rays with relative aspect angles rather than the scattering center reconstruction method. Our proposed model is evaluated on our generated dataset. The proposed method achieved about 0.01 to 0.39% higher accuracy than the pre-trained networks with a single input feature.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


Author(s):  
Wenqi Zhao ◽  
Satoshi Oyama ◽  
Masahito Kurihara

Counterfactual explanations help users to understand the behaviors of machine learning models by changing the inputs for the existing outputs. For an image classification task, an example counterfactual visual explanation explains: "for an example that belongs to class A, what changes do we need to make to the input so that the output is more inclined to class B." Our research considers changing the attribute description text of class A on the basis of the attributes of class B and generating counterfactual images on the basis of the modified text. We can use the prediction results of the model on counterfactual images to find the attributes that have the greatest effect when the model is predicting classes A and B. We applied our method to a fine-grained image classification dataset and used the generative adversarial network to generate natural counterfactual visual explanations. To evaluate these explanations, we used them to assist crowdsourcing workers in an image classification task. We found that, within a specific range, they improved classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document