Refined land-cover classification mapping using a multi-scale transformation method from remote sensing, unmanned aerial vehicle, and field surveys in Sanjiangyuan National Park, China

2021 ◽  
Vol 15 (01) ◽  
Author(s):  
Shuai Han ◽  
Qingkai Meng ◽  
Haocheng Liu ◽  
Ying Peng ◽  
Jianping Han ◽  
...  
2019 ◽  
Vol 11 (12) ◽  
pp. 1443 ◽  
Author(s):  
Huang Yao ◽  
Rongjun Qin ◽  
Xiaoyu Chen

The unmanned aerial vehicle (UAV) sensors and platforms nowadays are being used in almost every application (e.g., agriculture, forestry, and mining) that needs observed information from the top or oblique views. While they intend to be a general remote sensing (RS) tool, the relevant RS data processing and analysis methods are still largely ad-hoc to applications. Although the obvious advantages of UAV data are their high spatial resolution and flexibility in acquisition and sensor integration, there is in general a lack of systematic analysis on how these characteristics alter solutions for typical RS tasks such as land-cover classification, change detection, and thematic mapping. For instance, the ultra-high-resolution data (less than 10 cm of Ground Sampling Distance (GSD)) bring more unwanted classes of objects (e.g., pedestrian and cars) in land-cover classification; the often available 3D data generated from photogrammetric images call for more advanced techniques for geometric and spectral analysis. In this paper, we perform a critical review on RS tasks that involve UAV data and their derived products as their main sources including raw perspective images, digital surface models, and orthophotos. In particular, we focus on solutions that address the “new” aspects of the UAV data including (1) ultra-high resolution; (2) availability of coherent geometric and spectral data; and (3) capability of simultaneously using multi-sensor data for fusion. Based on these solutions, we provide a brief summary of existing examples of UAV-based RS in agricultural, environmental, urban, and hazards assessment applications, etc., and by discussing their practical potentials, we share our views in their future research directions and draw conclusive remarks.


2020 ◽  
Vol 14 (03) ◽  
Author(s):  
Hao Liu ◽  
Jie Li ◽  
Qiuhua Tang ◽  
Xinghua Zhou ◽  
Jiayuan Liu ◽  
...  

2021 ◽  
Vol 13 (18) ◽  
pp. 3771
Author(s):  
Tao Lei ◽  
Linze Li ◽  
Zhiyong Lv ◽  
Mingzhe Zhu ◽  
Xiaogang Du ◽  
...  

Land cover classification from very high-resolution (VHR) remote sensing images is a challenging task due to the complexity of geography scenes and the varying shape and size of ground targets. It is difficult to utilize the spectral data directly, or to use traditional multi-scale feature extraction methods, to improve VHR remote sensing image classification results. To address the problem, we proposed a multi-modality and multi-scale attention fusion network for land cover classification from VHR remote sensing images. First, based on the encoding-decoding network, we designed a multi-modality fusion module that can simultaneously fuse more useful features and avoid redundant features. This addresses the problem of low classification accuracy for some objects caused by the weak ability of feature representation from single modality data. Second, a novel multi-scale spatial context enhancement module was introduced to improve feature fusion, which solves the problem of a large-scale variation of objects in remote sensing images, and captures long-range spatial relationships between objects. The proposed network and comparative networks were evaluated on two public datasets—the Vaihingen and the Potsdam datasets. It was observed that the proposed network achieves better classification results, with a mean F1-score of 88.6% for the Vaihingen dataset and 92.3% for the Potsdam dataset. Experimental results show that our model is superior to the state-of-the-art network models.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


Sign in / Sign up

Export Citation Format

Share Document