Change prediction and modeling of dynamic mangrove ecosystem using remotely sensed hyperspectral image data

2021 ◽  
Vol 15 (04) ◽  
Author(s):  
Dipanwita Ghosh ◽  
Somdatta Chakravortty ◽  
Antonio Plaza ◽  
Jun Li
2008 ◽  
Vol 22 (9) ◽  
pp. 482-490 ◽  
Author(s):  
Howland D. T. Jones ◽  
David M. Haaland ◽  
Michael B. Sinclair ◽  
David K. Melgaard ◽  
Mark H. Van Benthem ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Johannes Jordan ◽  
Elli Angelopoulou ◽  
Andreas Maier

Multispectral and hyperspectral images are well established in various fields of application like remote sensing, astronomy, and microscopic spectroscopy. In recent years, the availability of new sensor designs, more powerful processors, and high-capacity storage further opened this imaging modality to a wider array of applications like medical diagnosis, agriculture, and cultural heritage. This necessitates new tools that allow general analysis of the image data and are intuitive to users who are new to hyperspectral imaging. We introduce a novel framework that bundles new interactive visualization techniques with powerful algorithms and is accessible through an efficient and intuitive graphical user interface. We visualize the spectral distribution of an image via parallel coordinates with a strong link to traditional visualization techniques, enabling new paradigms in hyperspectral image analysis that focus on interactive raw data exploration. We combine novel methods for supervised segmentation, global clustering, and nonlinear false-color coding to assist in the visual inspection. Our framework coined Gerbil is open source and highly modular, building on established methods and being easily extensible for application-specific needs. It satisfies the need for a general, consistent software framework that tightly integrates analysis algorithms with an intuitive, modern interface to the raw image data and algorithmic results. Gerbil finds its worldwide use in academia and industry alike with several thousand downloads originating from 45 countries.


2011 ◽  
Vol 29 (No. 6) ◽  
pp. 595-602 ◽  
Author(s):  
Q. Lü ◽  
M.-j. Tang ◽  
J.-r. Cai ◽  
J.-w. Zhao ◽  
S. Vittayapadung

It is necessary to develop a non-destructive technique for kiwifruit quality analysis because the machine injury could lower the quality of fruit and incur economic losses. Bruises are not visible externally owing to the special physical properties of kiwifruit peel.We proposed the hyperspectral imaging technique to inspect the hidden bruises on kiwifruit. The Vis/NIR (408–1117 nm) hyperspectral image data was collected. Multiple optimal wavelength (682, 723, 744, 810, and 852 nm) images were obtained using principal component analysis on the high dimension spectral image data (wavelength range from 600 nm to 900 nm). The bruise regions were extracted from the component images of the five waveband images using RBF-SVM classification. The experimental results showed that the error of hidden bruises detection on fruits by means of hyperspectral imaging was 12.5%. It was concluded that the multiple optimal waveband images could be used to constructs a multispectral detection system for hidden bruises on kiwifruits.


Sign in / Sign up

Export Citation Format

Share Document