Improved sensible and latent heat flux estimation of community land model by using ensemble Kalman filter assimilation

Author(s):  
Chaoshun Liu ◽  
Shijie Shu ◽  
Wei Gao
2009 ◽  
Vol 149 (10) ◽  
pp. 1646-1665 ◽  
Author(s):  
Kaniska Mallick ◽  
Bimal K. Bhattacharya ◽  
V.U.M. Rao ◽  
D. Raji Reddy ◽  
Saon Banerjee ◽  
...  

1997 ◽  
Vol 33 (3) ◽  
pp. 427-438 ◽  
Author(s):  
Cheng-I Hsieh ◽  
Gabriel G. Katul ◽  
John Schieldge ◽  
John T. Sigmon ◽  
Kenneth K. Knoerr

2016 ◽  
Vol 17 (9) ◽  
pp. 2419-2430 ◽  
Author(s):  
Jianxiu Qiu ◽  
Wade T. Crow ◽  
Grey S. Nearing

Abstract This study aims to identify the impact of vertical support on the information content of soil moisture (SM) for latent heat flux estimation. This objective is achieved via calculation of the mutual information (MI) content between multiple soil moisture variables (with different vertical supports) and current/future evaporative fraction (EF) using ground-based soil moisture and latent/sensible heat flux observations acquired from the AmeriFlux network within the contiguous United States. Through the intercomparison of MI results from different SM–EF pairs, the general value (for latent heat flux estimation) of superficial soil moisture observations , vertically integrated soil moisture observations , and vertically extrapolated soil moisture time series [soil wetness index (SWI) from a simple low-pass transformation of ] are examined. Results suggest that, contrary to expectations, 2-day averages of and have comparable mutual information with regards to EF. That is, there is no clear evidence that the information content for flux estimation is enhanced via deepening the vertical support of superficial soil moisture observations. In addition, the utility of SWI in monitoring and forecasting EF is partially dependent on the adopted parameterization of time-scale parameter T in the exponential filter. Similar results are obtained when analyses are conducted at the monthly time scale, only with larger error bars. The contrast between the results of this paper and past work focusing on utilizing soil moisture to predict vegetation condition demonstrates that the particular application should be considered when characterizing the information content of soil moisture time series measurements.


2020 ◽  
Author(s):  
Theresa Boas ◽  
Heye Bogena ◽  
Thomas Grünwald ◽  
Bernard Heinesch ◽  
Dongryeol Ryu ◽  
...  

Abstract. The incorporation of a comprehensive crop module in land surface models offers the possibility to study the effect of agricultural land use and land management changes on the terrestrial water, energy and biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on regional and global scales in the framework of climate and land use change. In this study, the performance of the crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site specific field data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent agricultural sites, the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) in CLM5; (2) implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding these crop functional types (CFT) to the list of actively managed crops in CLM5; (3) introducing a cover cropping subroutine that allows multiple crop types on the same column within one year. The latter modification allows the simulation of cropping during winter months before usual cash crop planting begins in spring, which is a common agricultural management technique in humid and sub-humid regions. We compared simulation results with field data and found that both the parameterization of the CFTs, as well as the winter wheat subroutines, led to a significant simulation improvement in terms of energy fluxes, leaf area index (LAI), net ecosystem exchange (RMSE reduction for latent and sensible heat by up to 57 % and 59 % respectively) and crop yield (up to 87 % improvement in winter wheat yield prediction) compared with default model results. The cover cropping subroutine yielded a substantial improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of LAI curve and latent heat flux (reduction of winter time RMSE for latent heat flux by 42 %). We anticipate that our model modifications offer opportunities to improve yield predictions, to study the effects of large-scale cover cropping on energy fluxes, soil carbon and nitrogen pools, and soil water storage in future studies with CLM5.


2021 ◽  
Author(s):  
Eli Dennis ◽  
Hugo Berbery

<p>Soil hydro-physical properties are necessary components in regional climate simulation; yet, the parameter inaccuracies introduce uncertainty in the representation of surface water and energy fluxes leading to differences in land-atmosphere interactions, and precipitation. This study examines the uncertainties in the North American atmospheric water cycle that result from the use of different soil datasets. Two soil datasets are considered: STATSGO from the United States Department of Agriculture and GSDE from Beijing Normal University.  Each dataset's dominant soil category allocations differ significantly at the model's resolution. Large regional discrepancies are found in the assignments of soil category, such that, for instance, in the Midwestern US (hereafter, Midwest), there is a systematic reduction in soil grain size allowing the impacts of the differing assignments to project onto regional scales.</p> <p>The two simulations are conducted from June 1–August 31, 2016–2018 using the Weather Research and Forecasting Model coupled with the Community Land Model version 4. In the Midwest, where soil grain size decreases from STATSGO to GSDE, the GSDE simulation experiences reduced mean latent heat flux (–15 W m<sup>-2</sup>), and increased sensible heat flux (+15 W m<sup>-2</sup>).  The boundary layer thermodynamic structure responds to these changes resulting in differences in mean CAPE and CIN. In the GSDE simulation, there is more energy available for convection (CAPE: +200 J kg<sup>-1</sup>) in the Midwest, but it is more difficult to access that energy (CIN: +75 J kg<sup>-1</sup>). Differences arise in dynamic quantities, as well: the vertically-integrated moisture fluxes suggest a reduction in continental cyclonic rotation co-located with the decrease in latent heat flux and, the vertically-integrated moisture flux convergence is also affected. This combination of thermodynamic and dynamic responses culminate in a reduction of precipitation in the Midwest, which can be related to changes in the placement of soil hydro-physical properties.</p>


Sign in / Sign up

Export Citation Format

Share Document