Three-dimensional reconstruction coordinate error induced by asynchronous cameras for moving objects

Author(s):  
Yue Wang ◽  
Jin Zhang ◽  
Huaxia Deng ◽  
Ruoyu Fan
2020 ◽  
Vol 1 (1) ◽  
pp. 18-24
Author(s):  
A. Silva ◽  
J. L. Flores ◽  
A. Muñoz ◽  
G. García-Torales

Las técnicas basadas en proyección de luz estructurada son ampliamente estudiadas y utilizadas en el área de perfilometría tridimensional, esto debido a la capacidad para obtener información completa de la superficie de objetos. Algunas de estas técnicas se basan en la proyección de patrones de intensidad sinusoidal y el uso de algoritmos de corrimiento de fase. En el caso de la reconstrucción tridimensional de objetos dinámicos en movimiento, uno de los desafíos es reducir el número de pasos o imágenes a ser proyectadas. Sin embargo, la precisión de estos sistemas se reduce conforme decrece el número de patrones (a un mínimo de tres). El sistema de proyección presenta una respuesta no lineal, lo cual introduce armónicos en los patrones adquiridos y en la recuperación de fase. En los últimos años, la proyección desenfocada de patrones binarios para generar patrones de franjas cuasi sinusoidales ha emergido como una alternativa para evitar el problema de no linealidad del proyector y, por ende, reducir el error en la fase. En este trabajo se presenta una revisión de distintos métodos propuestos en la literatura para generar patrones binarios, los cuales sintetizan patrones cuasi sinusoidales cuando son proyectados fuera de foco. Adicionalmente, analizamos el error de fase en función a la cantidad de desenfoque y el tamaño del periodo fundamental de las franjas. The techniques of structured light projection are widely studied in the area of three-dimensional profilometry, due to its ability to obtain information from the surface of an object. In particular, those based on the projection of a sequence of sinusoidal intensity patterns and the use of phase shift algorithms. In the case of three-dimensional reconstruction of dynamic or moving objects, one of the trends is to reduce the number of steps or patterns to be projected. However, the accuracy of these systems is reduced as the number of steps decreases (to a minimum of 3 steps). This is because the projection systems present a non-linear response, which translates into the introduction of harmonics in the acquired sinusoidal patterns, and therefore, error in the recovered phase. In the last years, the defocused projection of binary patterns has emerged as an alternative to avoid the projector’s non-linearity and generates quasi-sinusoidal fringe patterns to reduce the phase error. In this work, we review different techniques that have been proposed in the literature to generate binary patterns, which synthesize quasi-sinusoidal patterns when projected out of focus. In addition, we analyze the error in the phase as a function of the defocusing amount and the fringe pitch.


Author(s):  
J. Frank ◽  
B. F. McEwen ◽  
M. Radermacher ◽  
C. L. Rieder

The tomographic reconstruction from multiple projections of cellular components, within a thick section, offers a way of visualizing and quantifying their three-dimensional (3D) structure. However, asymmetric objects require as many views from the widest tilt range as possible; otherwise the reconstruction may be uninterpretable. Even if not for geometric obstructions, the increasing pathway of electrons, as the tilt angle is increased, poses the ultimate upper limitation to the projection range. With the maximum tilt angle being fixed, the only way to improve the faithfulness of the reconstruction is by changing the mode of the tilting from single-axis to conical; a point within the object projected with a tilt angle of 60° and a full 360° azimuthal range is then reconstructed as a slightly elliptic (axis ratio 1.2 : 1) sphere.


Author(s):  
Nicolas Boisset ◽  
Jean-Christophe Taveau ◽  
Jean Lamy ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
...  

Hemocyanin, the respiratory pigment of the scorpion Androctonus australis is composed of 24 kidney shaped subunits. A model of architecture supported by many indirect arguments has been deduced from electron microscopy (EM) and immuno-EM. To ascertain, the disposition of the subunits within the oligomer, the 24mer was submitted to three-dimensional reconstruction by the method of single-exposure random-conical tilt series.A sample of native hemocyanin, prepared with the double layer negative staining technique, was observed by transmisson electron microscopy under low-dose conditions. Six 3D-reconstructions were carried out indenpendently from top, side and 45°views. The results are composed of solid-body surface representations, and slices extracted from the reconstruction volume.The main two characters of the molecule previously reported by Van Heel and Frank, were constantly found in the solid-body surface representations. These features are the presence of two different faces called flip and flop and a rocking of the molecule around an axis passing through diagonnally opposed hexamers. Furthermore, in the solid-body surface of the top view reconstruction, the positions and orientations of the bridges connecting the half molecules were found in excellent agreement with those predicted by the model.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


2006 ◽  
Vol 175 (4S) ◽  
pp. 82-82
Author(s):  
Gustavo Ayala ◽  
Rile Li ◽  
Hong Oai ◽  
Mohammad Sayeeddudin ◽  
Timothy C. Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document