coordinate error
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 11 (20) ◽  
pp. 9384
Author(s):  
Yan Liu ◽  
Zhendong Ge ◽  
Yingtao Yuan ◽  
Xin Su ◽  
Xiang Guo ◽  
...  

The stereo-vision system plays an increasingly important role in various fields of research and applications. However, inevitable slight movements of cameras under harsh working conditions can significantly influence the 3D measurement accuracy. This paper focuses on the effect of camera movements on the stereo-vision 3D measurement. The camera movements are divided into four categories, viz., identical translations and rotations, relative translation and rotation. The error models of 3D coordinate and distance measurement are established. Experiments were performed to validate the mathematical models. The results show that the 3D coordinate error caused by identical translations increases linearly with the change in the positions of both cameras, but the distance measurement is not affected. For identical rotations, the 3D coordinate error introduced only in the rotating plane is proportional to the rotation angle within 10° while the distance error is zero. For relative translation, both coordinate and distance errors keep linearly increasing with the change in the relative positions. For relative rotation, the relationship between 3D coordinate error and rotation angle can be described as the nonlinear trend similar to a sine-cosine curve. The impact of the relative rotation angle on distance measurement accuracy does not increase monotonically. The relative rotation is the main factor compared to other cases. Even for the occurrence of a rotation angle of 10°, the resultant maximum coordinate error is up to 2000 mm, and the distance error reaches 220%. The results presented are recommended as practice guidelines to reduce the measurement errors.


2020 ◽  
Vol 76 (1) ◽  
pp. 19-27
Author(s):  
Kaushik S. Hatti ◽  
Airlie J. McCoy ◽  
Robert D. Oeffner ◽  
Massimo D. Sammito ◽  
Randy J. Read

Good prior estimates of the effective root-mean-square deviation (r.m.s.d.) between the atomic coordinates of the model and the target optimize the signal in molecular replacement, thereby increasing the success rate in difficult cases. Previous studies using protein structures solved by X-ray crystallography as models showed that optimal error estimates (refined after structure solution) were correlated with the sequence identity between the model and target, and with the number of residues in the model. Here, this work has been extended to find additional correlations between parameters of the model and the target and hence improved prior estimates of the coordinate error. Using a graph database, a curated set of 6030 molecular-replacement calculations using models that had been solved by X-ray crystallography was analysed to consider about 120 model and target parameters. Improved estimates were achieved by replacing the sequence identity with the Gonnet score for sequence similarity, as well as by considering the resolution of the target structure and the MolProbity score of the model. This approach was extended by analysing 12 610 additional molecular-replacement calculations where the model was determined by NMR. The median r.m.s.d. between pairs of models in an ensemble was found to be correlated with the estimated r.m.s.d. to the target. For models solved by NMR, the overall coordinate error estimates were larger than for structures determined by X-ray crystallography, and were more highly correlated with the number of residues.


2019 ◽  
Vol 30 (2) ◽  
pp. 025007 ◽  
Author(s):  
Hongfang Chen ◽  
Bo Jiang ◽  
Zhaoyao Shi ◽  
Yanqiang Sun ◽  
Huixu Song ◽  
...  

Author(s):  
Andrew Curtis ◽  
Sandra Bempah ◽  
Jayakrishnan Ajayakumar ◽  
Dania Mofleh ◽  
Lorriane Odhiambo

Informal settlements pose a continuing health concern. While spatial methodologies have proven to be valuable tools to support health interventions, several factors limit their widespread use in these challenging environments. One such technology, spatial video, has been used for fine-scale contextualized mapping. In this paper, we address one of the limitations of the technique: the global positioning system (GPS) coordinate error. More specifically, we show how spatial video coordinate streams can be corrected and synced back to the original video to facilitate risk mapping. Past spatial video collections for the Mathare informal settlement of Kenya are used as an illustration as these data had been previously discarded because of excessive GPS error. This paper will describe the bespoke software that makes these corrections possible, and then will go on to investigate patterns in the coordinate error.


2015 ◽  
Vol 48 (3) ◽  
pp. 939-942 ◽  
Author(s):  
K. S. Dinesh Kumar ◽  
M. Gurusaran ◽  
S. N. Satheesh ◽  
P. Radha ◽  
S. Pavithra ◽  
...  

An online computing server,Online_DPI(where DPI denotes the diffraction precision index), has been created to calculate the `Cruickshank DPI' value for a given three-dimensional protein or macromolecular structure. It also estimates the atomic coordinate error for all the atoms available in the structure. It is an easy-to-use web server that enables users to visualize the computed values dynamically on the client machine. Users can provide the Protein Data Bank (PDB) identification code or upload the three-dimensional atomic coordinates from the client machine. The computed DPI value for the structure and the atomic coordinate errors for all the atoms are included in the revised PDB file. Further, users can graphically view the atomic coordinate error along with `temperature factors' (i.e.atomic displacement parameters). In addition, the computing engine is interfaced with an up-to-date local copy of the Protein Data Bank. New entries are updated every week, and thus users can access all the structures available in the Protein Data Bank. The computing engine is freely accessible online at http://cluster.physics.iisc.ernet.in/dpi/.


2013 ◽  
Vol 69 (a1) ◽  
pp. s297-s297
Author(s):  
Robert Oeffner ◽  
Gábor Bunkóczi ◽  
Airlie J. McCoy ◽  
Randy J. Read

2012 ◽  
Vol 198-199 ◽  
pp. 1016-1020
Author(s):  
Xiao Jie Li ◽  
Bao Zhen Ge

This paper studies three-dimensional laser scanning system of human body, and make adjustments according to the world coordinate error correction based on the point cloud obtained. This paper also analyzed the cause and characteristics of three-dimensional laser scanning system’s world coordinates error, and established the world coordinate correction model on the condition that vertical column coordinate error is not included in the calibration plane and the error is minimum relative to other highly cross-section. With a standard rectangular timber as the scan objects, correction factor is fitted and the effectiveness of this method is proved through experiments in which point cloud’s world coordinate error is significantly reduced.


Sign in / Sign up

Export Citation Format

Share Document