Hacking for astronomy: can 3D printers and open-hardware enable low-cost sub-/millimeter instrumentation?

2014 ◽  
Author(s):  
Carl Ferkinhoff
Keyword(s):  
Low Cost ◽  
2014 ◽  
Vol 20 (3) ◽  
pp. 245-255 ◽  
Author(s):  
Ariel Calderon ◽  
James Griffin ◽  
Juan Cristóbal Zagal

Purpose – The democratization of invention is a long lasting desire for the advancement of society. Having access to education and the means of production appears as the major factors for the implementation of this goal. 3D printing is a revolutionary technology that has the potential to bring digital manufacturing to everyone. However, the rise of personal fabrication requires an increase in printing quality, a reduction on machine cost and an increase in knowledge shared by the open hardware community. The purpose of this paper is to explore the development of a new Open Hardware printer project to address these points. Design/methodology/approach – The authors have designed and constructed a low-cost photopolymer-based 3D printer called BeamMaker. The printer is connected to a host computer and a digital-light-processing projector. This work details the design process and how improvements were implemented to reach good printing quality. The authors provide public access to the instructions, software, source code, parts list, user manual and STL and CAD files. Findings – The BeamMaker printer can build objects with a high surface quality that is comparable to the quality obtained by industrial photopolymer-based 3D printers. When testing the ability to print a sample cylinder, the printer shows higher accuracy when compared to other personal 3D printers. These findings are encouraging considering the low cost of the system. Research limitations/implications – The printing failure rate of the system has not been measured to date. The system requires some improvements to produce large objects. Practical implications – The printer cost is just USD380. This is five to eight times less expensive than popular personal 3D printers available today. The cost is 30 times less expensive than a personal photopolymer 3D printer produced by a main commercial company and yet producing results of similar quality. The authors expect good avenues for collaboration from the open-source community to continue improving these systems. Social implications – The high cost of current personal 3D printers prevents users from developing countries from entering into the open hardware trend. A dramatic reduction in printer cost such as that explored in this work might contribute to the real democratization of personal fabrication. Originality/value – The authors report on the status of three other photopolymer-based personal 3D printer projects. To the best of the authors' knowledge, BeamMaker is the first fully open hardware 3D printer project which uses this technology.


2021 ◽  
Vol 11 (17) ◽  
pp. 7977 ◽  
Author(s):  
Yue Liu ◽  
Andy Lin ◽  
Terrence R. Tiersch ◽  
William Todd Monroe

Sperm cryopreservation by vitrification is a promising approach for small-bodied animals such as zebrafish (Danio rerio). However, most vitrification tools adopted in aquatic research were initially designed for applications other than sperm (such as human embryo freezing) and, thus, pose challenges for adoption to sperm vitrification. Three-dimensional (3D) printing combined with open hardware sharing is an emerging strategy to address challenges in the development of cryopreservation tools. The goal of this study was to develop a 3D printed Vitrification Device for Cryo-Vials (VDCV) that can be integrated with the existing vial storage systems. The VDCV combined the vitrification and handling components to achieve functions of sample handling, vitrification, storage, and identification. The vitrification component featured a base, a stem, and a loop. A total of 36 configurations with various loop lengths (8, 10, and 12 mm); loop widths (2.0, 2.5, 3.0, and 3.5 mm); and support structures (open, transverse, and axial) of the VDCD prototypes were designed, fabricated, and tested. Device handling orientations (horizontal and vertical holding angles prior to and during freezing) were also investigated. Computer simulations estimated that the cooling rate of the samples ranged from 0.6–1.5 × 105 °C/min in all the configurations. Prior to freezing, loops with axial supports produced a minimum of 92% film retention. The overall trends of full vitrification occurrence were observed: horizontal plunging > vertical plunging, and axial support > transverse support and open loop. A loop length of 8 mm had the highest overall vitrification occurrence (86–100%). No significant differences (p = 0.6584) were shown in a volume capacity (5.7–6.0 µL) among the three supporting configurations. A single unit of VDCV can provide loading efficiencies of about 6 × 107 sperm/vial, pooling of samples from 3–6 males/vial, and fertilization for 1800 eggs/vial. The VDCV are low-cost (<$0.5 material cost per unit) and can be customized, standardized, securely labeled, and efficiently stored. The prototypes can be accessed by user communities through open-fabrication file sharing and fabricated with consumer-level 3D printers, thus facilitating community-level standardization.


2021 ◽  
Vol 22 ◽  
pp. 100949
Author(s):  
Peter Veteška ◽  
Zora Hajdúchová ◽  
Jozef Feranc ◽  
Katarína Tomanová ◽  
Ján Milde ◽  
...  

2019 ◽  
Vol 73 ◽  
pp. 167-179 ◽  
Author(s):  
Rafaela C. de Freitas ◽  
Rodrigo Alves ◽  
Abel G. da Silva Filho ◽  
Ricardo E. de Souza ◽  
Byron L.D. Bezerra ◽  
...  

2021 ◽  
Vol 1037 ◽  
pp. 77-83
Author(s):  
Andrew V. Kochetkov ◽  
T.N. Ivanova ◽  
Ludmila V. Seliverstova ◽  
Oleg V. Zakharov

The development of additive manufacturing requires the improvement of 3D printers to increase accuracy and productivity. Delta kinematics 3D printers have advantages over traditional sequential kinematics 3D printers. The main advantage is the high travel speed due to the parallel movement of the platform from three pairs of arms. Another advantage is the relatively low cost due to the small number of structural components. However, delta 3D printers have received limited use. The main reason is the low positioning accuracy of the end effector. Errors in the manufacture and assembly of components of a parallel drive mechanism add up geometrically and cause an error in the position of the end effector. These formulas can be applied to a 3D printer as well. However, well-known studies consider deterministic models. Therefore, the analysis is performed for limiting size errors. The purpose of this article is to simulate the effect of statistical errors in displacements and arm lengths on the positioning errors of a platform with the end effector. The article effectively complements the field of error analysis research and provides theoretical advice on error compensation for delta 3D printer.


Author(s):  
Alejandro Bonnet De León ◽  
Jose Luis Saorin ◽  
Jorge De la Torre-Cantero ◽  
Cecile Meier ◽  
María Cabrera-Pardo

<p class="0abstract"><span lang="EN-US">One of the drawbacks of using 3D printers in educational environments is that the creation time of each piece is high and therefore it is difficult to manufacture at least one piece for each student. This aspect is important so that each student can feel part of the manufacturing process. To achieve this, 3D printers can be used, not to make pieces, but to make the molds that students use to create replicas. On the other hand, for a mold to be used to make several pieces, it is convenient to make it with flexible material. However, most used material for 3D printers (PLA) is very rigid. To solve this problem, this article designs a methodology that allows the use of low-cost 3D printers (most common in school environments) with flexible material so that each mold can be used to manufacture parts for several students. To print flexible material with low-cost printers, it is necessary to adapt the machine and the print parameters to work properly. This article analyzes the changes to be made with a low cost 3D printer and validates the use of molds in school environments. A pilot test has been carried out with 8 students of the subject of Typography, in the School of Art and Superior of Design of Tenerife. During the activity, the students carried out the process of designing a typography and creating digital molds for 3D printing with flexible material. The designs were made using free 3D modeling programs and low-cost technologies.</span></p>


2018 ◽  
Vol 16 (11) ◽  
pp. 2827-2833
Author(s):  
A. Garcia-Collado ◽  
G. Molina-Cuberos ◽  
F. Ruiz ◽  
S. Zaragoza

HardwareX ◽  
2020 ◽  
Vol 8 ◽  
pp. e00132
Author(s):  
Leandro A.A. Aguiar ◽  
Nivaldo A P de Vasconcelos ◽  
Gabriela Chiuffa Tunes ◽  
Antonio J. Fontenele ◽  
Romildo de Albuquerque Nogueira ◽  
...  

2019 ◽  
Vol 5 (12) ◽  
pp. 88
Author(s):  
Kazuo Katoh

As conventional fluorescence microscopy and confocal laser scanning microscopy generally produce images with blurring at the upper and lower planes along the z-axis due to non-focal plane image information, the observation of biological images requires “deconvolution.” Therefore, a microscope system’s individual blur function (point spread function) is determined theoretically or by actual measurement of microbeads and processed mathematically to reduce noise and eliminate blurring as much as possible. Here the author describes the use of open-source software and open hardware design to build a deconvolution microscope at low cost, using readily available software and hardware. The advantage of this method is its cost-effectiveness and ability to construct a microscope system using commercially available optical components and open-source software. Although this system does not utilize expensive equipment, such as confocal and total internal reflection fluorescence microscopes, decent images can be obtained even without previous experience in electronics and optics.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0158502 ◽  
Author(s):  
Kamfai Chan ◽  
Mauricio Coen ◽  
Justin Hardick ◽  
Charlotte A. Gaydos ◽  
Kah-Yat Wong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document