Low-cost fused taper polymer optical fiber (LFT-POF) splitters for environmental and home-networking solution

Author(s):  
Latifah S. Supian ◽  
Mohammad Syuhaimi Ab-Rahman ◽  
Hadi Guna ◽  
Hazwan Harun ◽  
Malik Sulaiman ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2776
Author(s):  
José A. Borda-Hernández ◽  
Claudia M. Serpa-Imbett ◽  
Hugo E. Hernandez Figueroa

This research introduces a numerical design of an air-core vortex polymer optical fiber in cyclic transparent optical polymer (CYTOP) that propagates 32 orbital angular momentum (OAM) modes, i.e., it may support up to 64 stable OAM-states considering left- and right-handed circular polarizations. This fiber seeks to be an alternative to increase the capacity of short-range optical communication systems multiplexed by modes, in agreement with the high demand of low-cost, insensitive-to-bending and easy-to-handle fibers similar to others optical fibers fabricated in polymers. This novel fiber possesses unique characteristics: a diameter of 50 µm that would allow a high mechanical compatibility with commercially available polymer optical fibers, a difference of effective index between neighbor OAM modes of around 10−4 over a bandwidth from 1 to 1.6 µm, propagation losses of approximately 15 × 10−3 dB/m for all OAM modes, and a very low dispersion for OAM higher order modes (±l = 16) of up to +2.5 ps/km-nm compared with OAM lower order modes at a telecom wavelength of 1.3 µm, in which the CYTOP exhibits a minimal attenuation. The spectra of mutual coupling coefficients between modes are computed considering small bends of up to 3 cm of radius and slight ellipticity in the ring of up to 5%. Results show lower-charge weights for higher order OAM modes.


2018 ◽  
Vol 57 (24) ◽  
pp. 6927 ◽  
Author(s):  
Arnaldo G. Leal-Junior ◽  
Anselmo Frizera ◽  
Leticia M. Avellar ◽  
Maria José Pontes

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4293 ◽  
Author(s):  
Andressa Rezende ◽  
Camille Alves ◽  
Isabela Marques ◽  
Marco Silva ◽  
Eduardo Naves

The quantitative measurement of an articular motion is an important indicator of its functional state and for clinical and pathology diagnoses. Joint angle evaluation techniques can be applied to improve sports performance and provide feedback information for prostheses control. Polymer optical fiber (POF) sensors are presented as a novel method to evaluate joint angles, because they are compact, lightweight, flexible and immune to electromagnetic interference. This study aimed to characterize and implement a new portable and wearable system to measure angles based on a POF curvature sensor. This study also aimed to present the system performance in bench tests and in the measurement of the elbow joint in ten participants, comparing the results with a consolidated resistive goniometer. Results showed high repeatability of sensors between cycles and high similarity of behavior with the potentiometer, with the advantage of being more ergonomic. The proposed sensor presented errors comparable to the literature and showed some advantages over other goniometers, such as the inertial measurement unit (IMU) sensor and over other types of POF sensors. This demonstrates its applicability for joint angle evaluation.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6643
Author(s):  
Xiaoyu Yue ◽  
Haijin Chen ◽  
Hang Qu ◽  
Rui Min ◽  
Getinet Woyessa ◽  
...  

In this paper, an endlessly single mode microstructured polymer optical fiber (mPOF) in a Mach–Zehnder (M–Z) interferometer configuration is demonstrated for temperature and strain measurement. Because there is no commercial splicer applied for POF-silica optical fiber (SOF) connectorization, prior to the M–Z interferometric sensing, we introduce an imaging projecting method to align a polycarbonate mPOF to a SOF and then the splice is cured permanently using ultraviolet (UV) glue. A He-Ne laser beam at 632.8 nm coupled in a SOF is divided by a 1 × 2 fiber coupler to propagate in two fiber arms. A piece of mPOF is inserted in one arm for sensing implementation and the interference fringes are monitored by a camera. For non-annealed fiber, the temperature sensitivity is found to be 25.5 fringes/°C for increasing temperature and 20.6 fringes/°C for decreasing temperature. The converted sensitivity per unit length is 135.6 fringes/°C/m for increasing temperature, which is twice as much as the silica fiber, or 852.2 rad/°C/m (optical phase change versus fiber temperature), which is more than four times as much as that for the PMMA fiber. To solve the sensitivity disagreement, the fiber was annealed at 125 °C for 36 h. Just after the thermal treatment, the temperature measurement was conducted with sensitivities of 16.8 fringes/°C and 21.3 fringes/°C for increasing and decreasing process, respectively. One month after annealing, the linear response was improved showing a temperature sensitivity of ~20.7 fringes/°C in forward and reverse temperature measurement. For the strain measurement based on non-annealed fiber, the sensitivity was found to be ~1463 fringes/%ε showing repeatable linear response for forward and reverse strain. The fiber axial force sensitivity was calculated to be ~2886 fringes/N, showing a force measurement resolution of ~3.47 × 10−4 N. The sensing methodology adopted in this work shows several advantages, such as very low cost, high sensitivity, a straightforward sensing mechanism, and ease of fabrication.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
D. S. Montero ◽  
C. Vázquez

A low-cost intensity-based polymer optical fiber (POF) sensor for liquid detection applied to volumetric flasks is presented. Experimental results demonstrate the viability of the POF-based sensor system in a high-accuracy liquid level measurement scenario. Moreover, a wireless mesh sensor network based on ZigBee specification protocol to address multiplexed POF-based sensor is also developed. Experimental results demonstrate the feasibility to address a high number of optical sensors in an industrial process framework by means of this low-cost wireless solution.


2015 ◽  
Vol 44 (4) ◽  
pp. 406003
Author(s):  
杜新超 DU Xin-chao ◽  
贺正权 HE Zheng-quan ◽  
林霄 LIN Xiao ◽  
周利斌 ZHOU Li-bin ◽  
胡宝文 HU Bao-wen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document