Effects of distribution density and cell dimension of 3D vegetation model on canopy NDVI simulation base on DART

Author(s):  
Zhu Tao ◽  
Wei Gao ◽  
Runhe Shi ◽  
Yuyan Zeng
Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2032
Author(s):  
Pâmela A. Melo ◽  
Lívia A. Alvarenga ◽  
Javier Tomasella ◽  
Carlos R. Mello ◽  
Minella A. Martins ◽  
...  

Landform classification is important for representing soil physical properties varying continuously across the landscape and for understanding many hydrological processes in watersheds. Considering it, this study aims to use a geomorphology map (Geomorphons) as an input to a physically based hydrological model (Distributed Hydrology Soil Vegetation Model (DHSVM)) in a mountainous headwater watershed. A sensitivity analysis of five soil parameters was evaluated for streamflow simulation in each Geomorphons feature. As infiltration and saturation excess overland flow are important mechanisms for streamflow generation in complex terrain watersheds, the model’s input soil parameters were most sensitive in the “slope”, “hollow”, and “valley” features. Thus, the simulated streamflow was compared with observed data for calibration and validation. The model performance was satisfactory and equivalent to previous simulations in the same watershed using pedological survey and moisture zone maps. Therefore, the results from this study indicate that a geomorphologically based map is applicable and representative for spatially distributing hydrological parameters in the DHSVM.


2021 ◽  
Vol 13 (6) ◽  
pp. 1137
Author(s):  
Xihong Cui ◽  
Zheng Zhang ◽  
Li Guo ◽  
Xinbo Liu ◽  
Zhenxian Quan ◽  
...  

To analyze the root-soil water relationship at the stand level, we integrated ground-penetrating radar (GPR), which characterized the distribution of lateral coarse roots (>2 mm in diameter) of shrubs (Caragana microphylla Lam.), with soil core sampling, which mapped soil water content (SWC) distribution. GPR surveys and soil sampling were carried out in two plots (Plot 1 in 2017 and Plot 2 in 2018) with the same size (30 × 30 m2) in the sandy soil of the semi-arid shrubland in northern China. First, the survey area was divided into five depth intervals, i.e., 0–20, 20–40, 40–60, 60–80, and 80–100 cm. Each depth interval was then divided into three zones in the horizontal direction, including root-rich canopy-covered area, root-rich canopy-free area, and root-poor area, to indicate different surface distances to the canopy. The generalized additive models (GAMs) were used to analyze the correlation between root distribution density and SWC after the spatial autocorrelation of each variable was eliminated. Results showed that the root-soil water relationship varies between the vertical and horizontal directions. Vertically, more roots are distributed in soil with high SWC and fewer roots in soil with low SWC. Namely, root distribution density is positively correlated with SWC in the vertical direction. Horizontally, the root-soil water relationship is, however, more complex. In the canopy-free area of Plot 1, the root-soil water relationship was significant (p < 0.05) and negatively correlated in the middle two depth intervals (20–40 cm and 40–60 cm). In the same two depth intervals in the canopy-free area of Plot 2, the root-soil water relationship was also significant (p < 0.01) but non-monotonic correlated, that is, with the root distribution density increasing, the mean SWC decreased first and then increased. Moreover, we discussed possible mechanisms, e.g., root water uptake, 3D root distribution, preferential flow along roots, and different growing stages, which might lead to the spatially anisotropic relationship between root distribution and SWC at the stand level. This study demonstrates the advantages of GPR in ecohydrology studies at the field scale that is challenging for traditional methods. Results reported here complement existing knowledge about the root-soil water relationship in semi-arid environments and shed new insights on modeling the complex ecohydrological processes in the root zone.


Author(s):  
Nguyen Van Liem ◽  
Wu Zhenpeng ◽  
Jiao Renqiang

The effect of the shape/size and distribution of microgeometries of textures on improving the tribo-performance of crankpin bearing is proposed. Based on a combined model of the slider-crank mechanism dynamic and hydrodynamic lubrication, the distribution density, area density, and shape of spherical textures, square-cylindrical textures, wedge-shaped textures, and a hybrid between spherical texture and square-cylindrical texture on the crankpin bearing's tribo-performance are investigated under different operating conditions of the engine. The tribological characteristic of the crankpin bearing is then evaluated via the indexes of the oil film pressure p, asperity contact force, friction force, and friction coefficient of the crankpin bearing. The research results show that the distribution density with n = 12 and m = 6, and area density with α = 30% of various microtextures have an obvious effect on ameliorating the crankpin bearings tribo-performance. Concurrently, at the mixed lubrication region, the shape of the square-cylindrical texture on improving the tribo-performance is better than the other shapes of the spherical texture, wedge-shaped texture, and spherical and square-cylindrical texture. Particularly, all the average values of the asperity contact force, friction force, and friction coefficient with a square-cylindrical texture are significantly reduced by 14.6%, 19.5%, and 34.5%, respectively, in comparison without microtextures. Therefore, the microtextures of the spherical texture applied on the bearing surface can contribute to enhance the durability and decrease the friction power loss of the engine.


2003 ◽  
Vol 33 (10) ◽  
pp. 1905-1914 ◽  
Author(s):  
Irina P Panyushkina ◽  
Malcolm K Hughes ◽  
Eugene A Vaganov ◽  
Martin AR Munro

We reconstructed air temperature for two periods in the growth season from cell dimension and cell number variability in cross-dated tree rings of Larix cajanderi Mayr. from northeastern Siberia. Thirteen tree-ring chronologies based on cell size, cell wall thickness, and cell number were developed for AD 1642–1993. No clear evidence was found of an age-related trend in cell dimensions in the sampled materials, but cell numbers were correlated with cambial age. The chronologies contain strong temperature signals associated with the timing of xylem growth. We obtained reliable reconstructions of mean June temperature from the total cell number and July–September temperature from the cell wall thickness of latewood. June temperature and July–September temperature covaried for most of the period from AD 1642 to AD 1978. After that time, June temperature became cooler relative to July–September temperature. This difference caused disproportional changes in earlywood tracheids because of the late start of growth and cool conditions in June followed by warming during the rest of the season. The identification of this unusual recent change has shown that intraseasonal resolution may be achieved by cell dimension and cell number chronologies.


2018 ◽  
Vol 73 ◽  
pp. 131-143 ◽  
Author(s):  
Haiming Xie ◽  
Guangyu Tian ◽  
Hongxu Chen ◽  
Jing Wang ◽  
Yong Huang

1998 ◽  
Vol 139 (1-2) ◽  
pp. 15-36 ◽  
Author(s):  
Robert A. Monserud ◽  
Nadja M. Tchebakova ◽  
Olga V. Denissenko
Keyword(s):  

2011 ◽  
Vol 291-294 ◽  
pp. 344-348
Author(s):  
Lin Lin ◽  
Shu Yan ◽  
Yi Nian

The hierarchical topology of wireless sensor networks can effectively reduce the consumption in communication. Clustering algorithm is the foundation to realize herarchical structure, so it has been extensive researched. On the basis of Leach algorithm, a distance density based clustering algorithm (DDBC) is proposed, considering synthetically the distribution density of around nodes and the remaining energy factors of the node to dynamically banlance energy usage of nodes when selecting cluster heads. We analyzed the performance of DDBC through compared with the existing other clustering algorithms in simulation experiment. Results show that the proposed method can generare stable quantity cluster heads and banlance the energy load effectively.


Sign in / Sign up

Export Citation Format

Share Document