The effect of mice strain and labeling on the interstitial vessel permeability of nanoparticles (Conference Presentation)

Author(s):  
Lin-Jie Lin ◽  
Pei-Chun Wu ◽  
Tzu-Ming Liu
Keyword(s):  
2002 ◽  
Vol 115 (12) ◽  
pp. 2559-2567 ◽  
Author(s):  
Teresa Odorisio ◽  
Cataldo Schietroma ◽  
M. Letizia Zaccaria ◽  
Francesca Cianfarani ◽  
Cecilia Tiveron ◽  
...  

Placenta growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family, comprising at least five cytokines specifically involved in the regulation of vascular and/or lymphatic endothelium differentiation. Several lines of evidence indicate a role for PlGF in monocyte chemotaxis and in potentiating the activity of VEGF, but the exact function of this cytokine is not fully understood. To define the biological role of PlGF in vivo, we have produced a transgenic mouse model overexpressing this factor in the skin by using a keratin 14 promoter cassette. Our data indicate that PlGF has strong angiogenic properties in both fetal and adult life. PlGF overexpression results in a substantial increase in the number,branching and size of dermal blood vessels as well as in enhanced vascular permeability. Indeed, intradermally injected recombinant PlGF was able to induce vessel permeability in wild-type mice. The analysis of vascular endothelial growth factor receptor 1/flt-1 and vascular endothelial growth factor receptor 2/flk-1 indicates that the two receptors are induced in the skin endothelium of transgenic mice suggesting that both are involved in mediating the effect of overexpressed PlGF.


2019 ◽  
Author(s):  
Enrica Marmonti ◽  
Hannah Savage ◽  
Aiqian Zhang ◽  
Claudia Alvarez ◽  
Miriam Morrell ◽  
...  

ABSTRACTTumor vasculature is innately dysfunctional. Poorly functional tumor vessels inefficiently deliver chemotherapy to tumor cells; vessel hyper-permeability promotes chemotherapy delivery primarily to a tumor’s periphery. Here we identify a method for enhancing chemotherapy delivery and efficacy in Ewing sarcoma (ES) in mice by modulating tumor vessel permeability. Vessel permeability is partially controlled by the G protein-coupled Sphinosine-1-phosphate receptors 1 and 2 (S1PR1 and S1PR2) on endothelial cells. S1PR1 promotes endothelial cell junction integrity while S1PR2 destabilizes it. We hypothesize that an imbalance of S1PR1:S1PR2 is partially responsible for the dysfunctional vascular phenotype characteristic of ES and that by altering the balance in favor of S1PR1, ES vessel hyper-permeability can be reversed. In this study, we demonstrate that pharmacologic activation of S1PR1 by SEW2871 or inhibition of S1PR2 by JTE-013 caused more organized, mature, and functional tumor vessels. Importantly, S1PR1 activation or S1PR2 inhibition improved chemotherapy delivery to the tumor and anti-tumor efficacy. Our data suggests that pharmacologic targeting of S1PR1 and S1PR2 may be a useful adjuvant to standard chemotherapy for ES patients.NOVELTY AND IMPACTThis study demonstrates that Sphingosine-1-Phosphate (S1P) receptors are potential novel targets for tumor vasculature remodeling and adjuvant therapy for the treatment of Ewing Sarcoma. Unlike receptor tyrosine kinases that have already been extensively evaluated for use as vascular normalizing agents in oncology, S1P receptors are G protein-coupled receptors, which have not been well studied in tumor endothelium. Pharmacologic activators and inhibitors of S1P receptors are currently in clinical trials for treatment of auto-immune and cardiovascular diseases, indicating potential for clinical translation of this work.


2014 ◽  
Vol 7 (6) ◽  
pp. 920-929 ◽  
Author(s):  
Viviany R. Taqueti ◽  
Marcelo F. Di Carli ◽  
Michael Jerosch-Herold ◽  
Galina K. Sukhova ◽  
Venkatesh L. Murthy ◽  
...  

2018 ◽  
Vol 90 (1) ◽  
pp. 93-96 ◽  
Author(s):  
Cristina Maria Failla ◽  
Naomi De Luca ◽  
Maria Letizia Zaccaria ◽  
Emanuela De Domenico ◽  
Simona Avitabile ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document