The effects of laser beam incident angle and intensity distribution on Fabry-Perot etalon spectrum

Author(s):  
Yingying Wang ◽  
Wenjuan Shi ◽  
Ying Chen ◽  
Fahua Shen ◽  
Mengling Liu ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1567
Author(s):  
Shinpei Ogawa ◽  
Shoichiro Fukushima ◽  
Masaaki Shimatani

Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices.


2021 ◽  
Author(s):  
Feng-Ping Lin ◽  
Hui-Ling Hsu ◽  
Hui-Chung Lin ◽  
Hsin-Hsien Huang ◽  
Chien-Hsing Lu ◽  
...  

Abstract Background: Because of the low sensitivity of commercial products, development of a facile method to rapidly identify plague on-site remains highly attractive. Line arrays of poly(methacrylic acid) (PMAA) brushes were grafted using a photoresist template to fabricate one-dimensional diffraction gratings (DGs). The as-prepared samples first bound protein G to immobilize and orient the tails of the antibody of Yersinia pestis (abY). A laser beam was employed to analyze the 2D and 3D reflective signals of DGs at an incident angle of 45°. The abY-tailed PMAA DG possessed an optical feature with a characteristic diffraction effect along the SII, in which the projection of the laser beam on the plane of the DG chip was parallel to the strips, and ST configurations, in which they were perpendicular. A fluidic diffraction chip based on the abY-tailed PMMA DG was fabricated to examine the ability to detect Yersinia pestis along the ST configuration. Results: Upon flowing through the chip, Yersinia pestis was attached to the abY-tailed PMMA DG, which changed the diffraction intensity. The degree of the diffraction intensity exhibited a linear response to Yersinia pestis at concentrations from 102 to 107 CFU mL−1, and the limit of detection was 75 CFU mL−1, 1000 times lower than a commercial product (Alexter Bio-Detect Test). The diffractive sensor could selectively detect Yersinia pestis in spiked serum samples, with excellent standard deviation and recovery. Conclusion: Our platform provides a simple, label-free method for on-site plague diagnosis to prevent the highly rapid transmission of plague.


1983 ◽  
Vol 29 ◽  
Author(s):  
Y. Pauleau ◽  
R. Stawski ◽  
Ph. Lami ◽  
G. Auvert

ABSTRACTSilane molecules have been irradiated by a pulsed CO2 laser operating at 10.59 μm. The threshold of silicon formation by homogeneous dissociation of silane has been investigated as a function of laser fluence (0.1–3.5 J/cm2) and silane pressure (1–100 Torr). Silicon films have been deposited on quartz substrates using the laser beam either perpendicular or parallel to the substrate surface. The crystallographic structure and deposition rate of these silicon films are found to be dependent on the incident angle of the laser beam, silane pressure, substrate temperature and laser fluence. The growth mechanism of these films is discussed.


2011 ◽  
Vol 40 (8) ◽  
pp. 1205-1210
Author(s):  
林林 LIN Lin ◽  
李兵斌 LI Bing-bin ◽  
过振 GUO Zhen ◽  
王石语 WANG Shi-yu ◽  
刘海强 LIU Hai-qiang ◽  
...  

2017 ◽  
Vol 42 ◽  
pp. 29
Author(s):  
Masato Tsuneda ◽  
Teiji Nishio ◽  
Akito Saito ◽  
Sodai Tanaka ◽  
Daisuke Kawahara ◽  
...  

Defocused spherical mirror Fabry—Pérot etalons, in which the mirror separation is slightly less than the common radius of curvature, produce a multiple-beam fringe pattern of concentric rings, with quasi-linear spectral dispersion over an appreciable annular region corresponding to two free spectral ranges. The characteristics of these interferograms are discussed in relation to their many advantages for pulsed laser spectroscopy. These advantages include: (i) accuracy of frequency difference measurement; (ii) high illumination of the detector with moderate energy density in the laser beam; (iii) ease of alinement and permanent adjustment of the mirrors leading to the attainment in practice of a very high instrumental finesse (N R values of up to 90 have been achieved); (iv) measurement of degree of spatial coherence of laser beam; (v) ease of matching the interferogram to the spatial resolution of the detector. A simple optical path relation determines the positions of the fringes and the location of the quasilinear dispersion region. The interfering wavefronts, formed by multiple reflexion, have been numerically computed and summed to provide information on the finesse, fringe profiles, contrast and optimum conditions of use of this new, very high resolving power (107 to 108) quasi-linear spectrographic disperser. Constructional details are described and optical design criteria are discussed, together with the various experimental arrangements for employing the instrument. Comparison is made with the equivalent confocal and plane Fabry—Pérot etalons and methods of simultaneously measuring


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Brian E. Fehring ◽  
Roman W. Morse ◽  
Jason Chan ◽  
Kristofer M. Dressler ◽  
Evan T. Hurlburt ◽  
...  

Abstract Instantaneous temperature measurements at the interface between a solid wall and a thin, unsteady liquid film are performed using thermoreflectance, a nonintrusive optical technique with high temporal resolution. A laser beam is directed at a wall–liquid interface, and the intensity of the light reflected at that interface is measured by a photodiode. The intensity of the reflected light varies with the index of refraction of the liquid at the wall. The index of refraction is a function of temperature, which enables the instantaneous measurement of the wall temperature. In the presence of thin liquid films, reflections from the liquid–vapor interface at the free surface of the film generate noise in the measurements. We demonstrate that orienting the laser beam at a large incident angle, close to total internal reflection, minimizes noise from the liquid–vapor interface while increasing the sensitivity of the measurement. The thermoreflectance technique is validated in an unsteady two-phase annular flow. Measurements of temperature fluctuations less than 1 K in amplitude are achieved, with an uncertainty of 0.1 K.


2017 ◽  
Author(s):  
Ljuan L. Gurdev ◽  
Tanja N. Dreischuh ◽  
Orlin I. Vankov ◽  
Eleonora N. Toncheva ◽  
Lachezar A. Avramov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document