Chemical Vapor Deposition of Silicon Films by Pulsed CO2 Laser Irradiaton of Silane

1983 ◽  
Vol 29 ◽  
Author(s):  
Y. Pauleau ◽  
R. Stawski ◽  
Ph. Lami ◽  
G. Auvert

ABSTRACTSilane molecules have been irradiated by a pulsed CO2 laser operating at 10.59 μm. The threshold of silicon formation by homogeneous dissociation of silane has been investigated as a function of laser fluence (0.1–3.5 J/cm2) and silane pressure (1–100 Torr). Silicon films have been deposited on quartz substrates using the laser beam either perpendicular or parallel to the substrate surface. The crystallographic structure and deposition rate of these silicon films are found to be dependent on the incident angle of the laser beam, silane pressure, substrate temperature and laser fluence. The growth mechanism of these films is discussed.

Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


1992 ◽  
Vol 283 ◽  
Author(s):  
Hideki Matsumura ◽  
Yoichi Hosoda ◽  
Seijiro Furukawa

ABSTRACTPoly-silicon films are obtained at temperatures as low as 400 °C by the catalytic chemical vapor deposition (cat-CVD) method, in which deposition gases are decomposed by the catalytic or pyrolytic reactions with a heated catalyzer near substrates. It is found that there are roughly two modes of deposition conditions such as low gas pressure mode and high gas pressure mode for obtaining poly-silicon films, and also that the Hall mobility of the cat-CVD poly-silicon films of low gas pressure mode sometimes exceeds over 100 cm2/Vs.


2011 ◽  
Vol 1284 ◽  
Author(s):  
Alicja Bachmatiuk ◽  
Felix Börrnert ◽  
Imad Ibrahim ◽  
Bernd Büchner ◽  
Mark H. Rümmeli

ABSTRACTThe formation of carbon nanostructures using silica nanoparticles from quartz substrates as a catalyst in an aerosol assisted chemical vapor deposition process was examined. The silica particles are reduced to silicon carbide via a carbothermal reduction process. The recyclability of the explored quartz substrates is also presented. The addition of triethyl borate improves the efficiency of the carbothermal reduction process and carbon nanotubes formation. Moreover, the addition of hydrogen during the chemical vapor deposition leads to the helical carbon nanostructures formation.


Sign in / Sign up

Export Citation Format

Share Document