scholarly journals Point cloud subjective evaluation methodology based on reconstructed surfaces

Author(s):  
Marco Bernardo ◽  
evangelos alexious ◽  
Antonio M. G. Pinheiro ◽  
Touradj Ebrahimi ◽  
Luis Cruz ◽  
...  
Author(s):  
Evangelos Alexiou ◽  
Touradj Ebrahimi ◽  
Marco V. Bernardo ◽  
Manuela Pereira ◽  
Antonio Pinheiro ◽  
...  

Author(s):  
Evangelos Alexiou ◽  
Irene Viola ◽  
Tomás M. Borges ◽  
Tiago A. Fonseca ◽  
Ricardo L. de Queiroz ◽  
...  

Abstract Recent trends in multimedia technologies indicate the need for richer imaging modalities to increase user engagement with the content. Among other alternatives, point clouds denote a viable solution that offers an immersive content representation, as witnessed by current activities in JPEG and MPEG standardization committees. As a result of such efforts, MPEG is at the final stages of drafting an emerging standard for point cloud compression, which we consider as the state-of-the-art. In this study, the entire set of encoders that have been developed in the MPEG committee are assessed through an extensive and rigorous analysis of quality. We initially focus on the assessment of encoding configurations that have been defined by experts in MPEG for their core experiments. Then, two additional experiments are designed and carried to address some of the identified limitations of current approach. As part of the study, state-of-the-art objective quality metrics are benchmarked to assess their capability to predict visual quality of point clouds under a wide range of radically different compression artifacts. To carry the subjective evaluation experiments, a web-based renderer is developed and described. The subjective and objective quality scores along with the rendering software are made publicly available, to facilitate and promote research on the field.


2015 ◽  
Author(s):  
Jonathan Chevelu ◽  
Damien Lolive ◽  
Sébastien Le Maguer ◽  
David Guennec

2014 ◽  
Vol 511-512 ◽  
pp. 554-558 ◽  
Author(s):  
Zheng Chang Zhang

Three-dimensional scanning device will scan a large number of three-dimensional data one time, which will inevitably mixed with some of the noise points, casusing the reconstructed surfaces and curves that is not smooth. At the same time a large number of three-dimensional data can lead to reconstructing surface slow down. This paper applied Wiener-filtering which is commonly used in the gray image de-noising and smoothing treatment to filtering three-dimensional point-cloud-data by replace the gray value of gray image with a z value of point-cloud-data, and the point-cloud-data which undulates strongly will be seen as noise point and removed. At the same time using octree algorithm to streamline the data, which can be guaranteed to retain local feature point cloud data while streamlining data.


Author(s):  
M. Gajdardziska-Josifovska

Parabolas have been observed in the reflection high-energy electron diffraction (RHEED) patterns from surfaces of single crystals since the early thirties. In the last decade there has been a revival of attempts to elucidate the origin of these surface parabolas. The renewed interest stems from the need to understand the connection between the parabolas and the surface resonance (channeling) condition, the latter being routinely used to obtain higher intensity in reflection electron microscopy (REM) images of surfaces. Several rather diverging descriptions have been proposed to explain the parabolas in the reflection and transmission Kikuchi patterns. Recently we have developed an unifying general treatment in which the parabolas are shown to be K-lines of two-dimensional lattices. Here we want to review the main features of this description and present an experimental diffraction pattern from a 30° MgO (111) surface which displays parabolas that can be attributed to the surface reconstruction.


Author(s):  
L. -M. Peng ◽  
M. J. Whelan

In recent years there has been a trend in the structure determination of reconstructed surfaces to use high energy electron diffraction techniques, and to employ a kinematic approximation in analyzing the intensities of surface superlattice reflections. Experimentally this is motivated by the great success of the determination of the dimer adatom stacking fault (DAS) structure of the Si(111) 7 × 7 reconstructed surface.While in the case of transmission electron diffraction (TED) the validity of the kinematic approximation has been examined by using multislice calculations for Si and certain incident beam directions, far less has been done in the reflection high energy electron diffraction (RHEED) case. In this paper we aim to provide a thorough Bloch wave analysis of the various diffraction processes involved, and to set criteria on the validity for the kinematic analysis of the intensities of the surface superlattice reflections.The validity of the kinematic analysis, being common to both the TED and RHEED case, relies primarily on two underlying observations, namely (l)the surface superlattice scattering in the selvedge is kinematically dominating, and (2)the superlattice diffracted beams are uncoupled from the fundamental diffracted beams within the bulk.


1997 ◽  
Vol 78 (05) ◽  
pp. 1352-1356 ◽  
Author(s):  
Emel Aygören-Pürsün ◽  
Inge Scharrer ◽  

SummaryIn this open multicenter study the safety and efficacy of recombinant factor VIII (rFVIII) was assessed in 39 previously treated patients with hemophilia A (factor VIII basal activity ≤15%).Recombinant FVIII was administered for prophylaxis and treatment of bleeding episodes and for surgical procedures. A total of 3679 infusions of rFVIII were given. Efficacy of rFVIII as assessed by subjective evaluation of response to infusion and mean annual consumption of rFVIII was comparable to that of plasma derived FVIII concentrates. The incremental recovery of FVIII (2.4 ± 0,83%/IU/kg, 2.12 ± 0.61%/IU/kg, resp.) was within the expected range. No clinical significant FVIII inhibitor was detected in this trial. Five of 16 susceptible patients showed a seroconversion for parvovirus B19. However, the results are ambiguous in two cases and might be explained otherwise in one further case. Thus, in two patients a reliable seroconversion for parvovirus B19 was observed.


2020 ◽  
pp. 1-12
Author(s):  
Hu Jingchao ◽  
Haiying Zhang

The difficulty in class student state recognition is how to make feature judgments based on student facial expressions and movement state. At present, some intelligent models are not accurate in class student state recognition. In order to improve the model recognition effect, this study builds a two-level state detection framework based on deep learning and HMM feature recognition algorithm, and expands it as a multi-level detection model through a reasonable state classification method. In addition, this study selects continuous HMM or deep learning to reflect the dynamic generation characteristics of fatigue, and designs random human fatigue recognition experiments to complete the collection and preprocessing of EEG data, facial video data, and subjective evaluation data of classroom students. In addition to this, this study discretizes the feature indicators and builds a student state recognition model. Finally, the performance of the algorithm proposed in this paper is analyzed through experiments. The research results show that the algorithm proposed in this paper has certain advantages over the traditional algorithm in the recognition of classroom student state features.


Sign in / Sign up

Export Citation Format

Share Document