Light emission from Si avalanche mode LEDs as a function of E field control, impurity scattering, and carrier density balancing

Author(s):  
Hongliang Sun ◽  
Zhaotong Zhang ◽  
Kingsley . Ogudo ◽  
Kaikai Xu ◽  
Lukas Snyman . Snyman
2007 ◽  
Vol 556-557 ◽  
pp. 395-398 ◽  
Author(s):  
K. Neimontas ◽  
Kęstutis Jarašiūnas ◽  
Maher Soueidan ◽  
Gabriel Ferro ◽  
Yves Monteil

We applied picosecond dynamic grating technique for studies of carrier dynamics in ntype DPB(double positioning boundary)-free 3C-SiC (111) epilayer grown by VLS (vapour-liquidsolid) mechanism on 6H-SiC (0001). The measurements of bipolar diffusion coefficient D and carrier lifetime τR in the samples at various pump energies (0.5 – 3.0 mJ/cm2) and temperatures (9 – 300 K) provided the values of bipolar mobility of ~ 80 cm2/Vs and τR = 1.5 - 2.0 ns at 300 K. The ionized impurity scattering, dominant at T < 100 K, and carrier-density dependent lifetimes in 10- 300 K range were attributed to contribution of trapping centers which electrical activity saturates at high carrier density.


2008 ◽  
Vol 5 (7) ◽  
pp. 2524-2527
Author(s):  
G. Pistone ◽  
S. Savasta ◽  
O. Di Stefano ◽  
G. Martino ◽  
R. Girlanda ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. 721-724
Author(s):  
Zheng Chen ◽  
Yuan Liu ◽  
Hui Zhang ◽  
Zhongran Liu ◽  
He Tian ◽  
...  

The oxide interface between LaAlO3 and KTaO3(111) can harbor a superconducting state. We report that by applying a gate voltage (VG) across KTaO3, the interface can be continuously tuned from superconducting into insulating states, yielding a dome-shaped Tc-VG dependence, where Tc is the transition temperature. The electric gating has only a minor effect on carrier density but a strong one on mobility. We interpret the tuning of mobility in terms of change in the spatial profile of the carriers in the interface and hence, effective disorder. As the temperature is decreased, the resistance saturates at the lowest temperature on both superconducting and insulating sides, suggesting the emergence of a quantum metallic state associated with a failed superconductor and/or fragile insulator.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


Author(s):  
Gisèle Nicolas ◽  
Jean-Marie Bassot ◽  
Marie-Thérèse Nicolas

The use of fast-freeze fixation (FFF) followed by freeze-substitution (FS) brings substantial advantages which are due to the extreme rapidity of this fixation compared to the conventional one. The initial step, FFF, physically immobilizes most molecules and therefore arrests the biological reactions in a matter of milliseconds. The second step, FS, slowly removes the water content still in solid state and, at the same time, chemically fixes the other cell components in absence of external water. This procedure results in an excellent preservation of the ultrastructure, avoids osmotic artifacts,maintains in situ most soluble substances and keeps up a number of cell activities including antigenicities. Another point of interest is that the rapidity of the initial immobilization enables the capture of unstable structures which, otherwise, would slip towards a more stable state. When combined with electrophysiology, this technique arrests the ultrastructural modifications at a well defined state, allowing a precise timing of the events.We studied the epithelium of the elytra of the scale-worm, Harmothoe lunulata which has excitable, conductible and bioluminescent properties. The intracellular sites of the light emission are paracrystals of endoplasmic reticulum (PER), named photosomes (Fig.1). They are able to flash only when they are coupled with plasma membrane infoldings by dyadic or triadic junctions (Fig.2) basically similar to those of the striated muscle fibers. We have studied them before, during and after stimulation. FFF-FS showed that these complexes are labile structures able to diffentiate and dedifferentiate within milliseconds. Moreover, a transient network of endoplasmic reticulum was captured which we have named intermediate endoplasmic reticulum (IER) surrounding the PER (Fig.1). Numerous gap junctions are found in the membranous infoldings of the junctional complexes (Fig.3). When cryofractured, they cleave unusually (Fig.4-5). It is tempting to suggest that they play an important role in the conduction of the excitation.


1999 ◽  
Vol 4 ◽  
pp. 31-86 ◽  
Author(s):  
R. Katilius ◽  
A. Matulionis ◽  
R. Raguotis ◽  
I. Matulionienė

The goal of the paper is to overview contemporary theoretical and experimental research of the microwave electric noise and fluctuations of hot carriers in semiconductors, revealing sensitivity of the noise spectra to non-linearity in the applied electric field strength and, especially, in the carrier density. During the last years, investigation of electronic noise and electron diffusion phenomena in doped semiconductors was in a rapid progress. By combining analytic and Monte Carlo methods as well as the available experimental results on noise, it became possible to obtain the electron diffusion coefficients in the range of electric fields where inter-electron collisions are important and Price’s relation is not necessarily valid. Correspondingly, a special attention to the role of inter-electron collisions and of the non-linearity in the carrier density while shaping electric noise and diffusion phenomena in the non-equilibrium states will be paid. The basic and up-to-date information will be presented on methods and advances in this contemporary field - the field in which methods of non-linear analytic and computational analysis are indispensable while seeking coherent understanding and interpretation of experimental results.


Sign in / Sign up

Export Citation Format

Share Document