Measurement of meteorological quantities in the atmospheric boundary layer of the ultrasonic weather station AMK-03 on tethered balloon

Author(s):  
Alexey Telminov ◽  
Vladimir Korolkov ◽  
Konstantin Pustovalov ◽  
Aleksandr Tikhomirov ◽  
Vladimir Antonovich ◽  
...  
2020 ◽  
pp. 105355
Author(s):  
S.V. Anisimov ◽  
S.V. Galichenko ◽  
K.V. Aphinogenov ◽  
E.V. Klimanova ◽  
A.A. Prokhorchuk ◽  
...  

2019 ◽  
Vol 12 (7) ◽  
pp. 4019-4038 ◽  
Author(s):  
Ulrike Egerer ◽  
Matthias Gottschalk ◽  
Holger Siebert ◽  
André Ehrlich ◽  
Manfred Wendisch

Abstract. The new BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) tethered balloon system is introduced. It combines a set of instruments to measure turbulent and radiative parameters and energy fluxes. BELUGA enables collocated measurements either at a constant altitude or as vertical profiles up to 1.5 km in height. In particular, the instrument payload of BELUGA comprises three modular instrument packages for high-resolution meteorological, wind vector and broadband radiation measurements. Collocated data acquisition allows for estimates of the driving parameters in the energy balance at various heights. Heating rates and net irradiances can be related to turbulent fluxes and local turbulence parameters such as dissipation rates. In this paper the technical setup, the instrument performance, and the measurement strategy of BELUGA are explained. Furthermore, the high vertical resolution due to the slow ascent speed is highlighted as a major advantage of tethered balloon-borne observations. Three illustrative case studies of the first application of BELUGA in the Arctic atmospheric boundary layer are presented. As a first example, measurements of a single-layer stratocumulus are discussed. They show a pronounced cloud top radiative cooling of up to 6 K h−1. To put this into context, a second case elaborates respective measurements with BELUGA in a cloudless situation. In a third example, a multilayer stratocumulus was probed, revealing reduced turbulence and negligible cloud top radiative cooling for the lower cloud layer. In all three cases the net radiative fluxes are much higher than turbulent fluxes. Altogether, BELUGA has proven its robust performance in cloudy conditions of the Arctic atmospheric boundary layer.


2020 ◽  
Author(s):  
Haijiong Sun ◽  
Yu Shi ◽  
Fei Hu ◽  
Zhe Zhang ◽  
Weichen Ding

<p>Physicochemical characteristics of the atmospheric boundary layer over North Plain China during the comprehensive observation experiment from 10 to 21 December 2018 were investigated in this paper. The observation data are obtained from the large tethered balloon, Doppler wind lidar, ground-level instruments. The maximum concentration of PM<sub>2.5</sub> exceeded 200 µg m-3, and the ratio value of PM<sub>2.5</sub>/PM<sub>10</sub> was basically around 0.4 (maximum has reached approximately 0.8) during the whole observation period, indicating that explosive growth of fine ode dominant aerosols during the winter heating season. The peak solar irradiance was slightly larger on the clean day, compared with the value during the pollution process. The correlation coefficient between the concentration of PM<sub>2.5</sub> and CO was highest (0.725) among the gas pollutants, and the relationship between O<sub>3</sub> and PM<sub>2.5</sub> was basically negative correlated, not simple linear relationship. Three distinctly different vertical profile types of the PM<sub>2.5</sub> were categorized according to the vertical changes based on the total 33 vertical profiles obtained by the tethered balloon. Type 1 was mainly observed in the daytime, accounted for nearly 51.5%, the PM<sub>2.5</sub> concentration decreased nearly linearly as a function of height below approximate 600 m; Type 2 shows a sharp decreasing trend from the ground to about 200 m; Type 3 shows multi-layer structure of pollutants, some pollutants suspended aloft in upper air. The vertical profile of PM<sub>2.5</sub> was closely related to the atmospheric vertical structure such as the wind, temperature and turbulent kinetic energy, caused by the diurnal variation of the boundary layer. Small wind layer and the weak turbulence activities contributed to the accumulation of pollutants. Vertical patterns of the concentration of PM<sub>2.5</sub> were also greatly affected by the local ground emission sources and regional transport processes.</p>


2021 ◽  
Vol 35 (1) ◽  
pp. 209-223
Author(s):  
Haijiong Sun ◽  
Yu Shi ◽  
Lei Liu ◽  
Weichen Ding ◽  
Zhe Zhang ◽  
...  

2019 ◽  
Author(s):  
Ulrike Egerer ◽  
Matthias Gottschalk ◽  
Holger Siebert ◽  
André Ehrlich ◽  
Manfred Wendisch

Abstract. The new BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) tethered balloon system is introduced. It combines a set of instruments to measure turbulent and radiative parameters and energy fluxes. BELUGA enables collocated measurements either at a constant altitude or as vertical profiles up to 1.5 km height. In particular, the instrument payload of BELUGA comprises three modular instrument packages for high resolution meteorological, wind vector and broadband radiation measurements. The collocated data acquisition allows to estimate the driving parameters of the energy balance in various altitudes. Heating rates and net irradiances can be related to turbulent fluxes and local turbulence parameters such as dissipation rates. In this paper the technical setup, the instrument performance, and the measurement strategy of BELUGA are explained. Furthermore, the high vertical resolution due to the slow ascent speed is highlighted as a major advantage of tethered balloon-borne observations. Three illustrative case studies of the first application of BELUGA in the Arctic atmospheric boundary layer are presented. As a first example, measurements of a single layer stratocumulus are discussed. They show a pronounced cloud top radiative cooling of up to 6 K h−1. To put this into context, a second case elaborates respective measurements with BELUGA in a cloudless situation. In a third example, a multi layer stratocumulus was probed, revealing reduced turbulence and negligible cloud top radiative cooling for the lower cloud layer. In all three cases the net radiative fluxes are much higher than turbulent fluxes. Altogether, BELUGA has proven its robust performance in cloudy conditions of the Arctic atmospheric boundary layer.


2007 ◽  
Vol 25 ◽  
pp. 49-55 ◽  
Author(s):  
S. Argentini ◽  
I. Pietroni ◽  
G. Mastrantonio ◽  
A. Viola ◽  
S. Zilitinchevich

Sign in / Sign up

Export Citation Format

Share Document