Macrophage-mediated delivery of chemotherapeutics for photochemical internalization (Conference Presentation)

Author(s):  
Stephanie Molina ◽  
Henry Hirschberg ◽  
Steen J. Madsen
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazunori Watanabe ◽  
Tomoko Nawachi ◽  
Ruriko Okutani ◽  
Takashi Ohtsuki

AbstractMethods to spatially induce apoptosis are useful for cancer therapy. To control the induction of apoptosis, methods using light, such as photochemical internalization (PCI), have been developed. We hypothesized that photoinduced delivery of microRNAs (miRNAs) that regulate apoptosis could spatially induce apoptosis. In this study, we identified pre-miR-664a as a novel apoptosis-inducing miRNA via mitochondrial apoptotic pathway. Further, we demonstrated the utility of photoinduced cytosolic dispersion of RNA (PCDR), which is an intracellular RNA delivery method based on PCI. Indeed, apoptosis is spatially regulated by pre-miR-664a and PCDR. In addition, we found that apoptosis induced by pre-miR-664a delivered by PCDR was more rapid than that by lipofection. These results suggest that pre-miR-664a is a nucleic acid drug candidate for cancer therapy and PCDR and pre-miR-664a-based strategies have potential therapeutic uses for diseases affecting various cell types.


Author(s):  
Isabella Suzuki ◽  
Margarete Moreno de Araujo ◽  
Vanderlei Salvador Bagnato ◽  
Maria Vitoria Lopes Badra Bentley

2015 ◽  
Vol 54 (16) ◽  
pp. 4885-4889 ◽  
Author(s):  
Theodossis A. Theodossiou ◽  
A. Ricardo Gonçalves ◽  
Konstantina Yannakopoulou ◽  
Ellen Skarpen ◽  
Kristian Berg

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Martin Hsiu-Chu Lin ◽  
Li-Ching Chang ◽  
Chiu-Yen Chung ◽  
Wei-Chao Huang ◽  
Ming-Hsueh Lee ◽  
...  

Glioblastoma multiforme (GBM) is the most common malignant primary neoplasm of the adult central nervous system originating from glial cells. The prognosis of those affected by GBM has remained poor despite advances in surgery, chemotherapy, and radiotherapy. Photochemical internalization (PCI) is a release mechanism of endocytosed therapeutics into the cytoplasm, which relies on the membrane disruptive effect of light-activated photosensitizers. In this study, phototherapy by PCI was performed on a human GBM cell-line using the topoisomerase II inhibitor etoposide (Etop) and the photosensitizer protoporphyrin IX (PpIX) loaded in nanospheres (Ns) made from generation-5 polyamidoamine dendrimers (PAMAM(G5)). The resultant formulation, Etop/PpIX-PAMAM(G5) Ns, measured 217.4 ± 2.9 nm in diameter and 40.5 ± 1.3 mV in charge. Confocal microscopy demonstrated PpIX fluorescence within the endo-lysosomal compartment, and an almost twofold increase in cellular uptake compared to free PpIX by flow cytometry. Phototherapy with 3 min and 5 min light illumination resulted in a greater extent of synergism than with co-administered Etop and PpIX; notably, antagonism was observed without light illumination. Mechanistically, significant increases in oxidative stress and apoptosis were observed with Etop/PpIX-PAMAM(G5) Ns upon 5 min of light illumination in comparison to treatment with either of the agents alone. In conclusion, simultaneous delivery and endo-lysosomal co-localization of Etop and PpIX by PAMAM(G5) Ns leads to a synergistic effect by phototherapy; in addition, the finding of antagonism without light illumination can be advantageous in lowering the dark toxicity and improving photo-selectivity.


2009 ◽  
Vol 85 (3) ◽  
pp. 740-749 ◽  
Author(s):  
Ole-Jacob Norum ◽  
Jon-Vidar Gaustad ◽  
Even Angell-Petersen ◽  
Einar K. Rofstad ◽  
Qian Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document