Increased count-rate performance and dose efficiency for silicon photon-counting detectors for full-field CT using an ASIC with adjustable shaping time

Author(s):  
Christel Sundberg ◽  
Mats Persson ◽  
Andreas Ehliar ◽  
Martin Sjölin ◽  
Jacob Wikner ◽  
...  
2021 ◽  
Vol 10 (24) ◽  
pp. 5757
Author(s):  
Salim Aymeric Si-Mohamed ◽  
Jade Miailhes ◽  
Pierre-Antoine Rodesch ◽  
Sara Boccalini ◽  
Hugo Lacombe ◽  
...  

The X-ray imaging field is currently undergoing a period of rapid technological innovation in diagnostic imaging equipment. An important recent development is the advent of new X-ray detectors, i.e., photon-counting detectors (PCD), which have been introduced in recent clinical prototype systems, called PCD computed tomography (PCD-CT) or photon-counting CT (PCCT) or spectral photon-counting CT (SPCCT) systems. PCD allows a pixel up to 200 microns pixels at iso-center, which is much smaller than that can be obtained with conventional energy integrating detectors (EID). PCDs have also a higher dose efficiency than EID mainly because of electronic noise suppression. In addition, the energy-resolving capabilities of these detectors allow generating spectral basis imaging, such as the mono-energetic images or the water/iodine material images as well as the K-edge imaging of a contrast agent based on atoms of high atomic number. In recent years, studies have therefore been conducted to determine the potential of PCD-CT as an alternative to conventional CT for chest imaging.


Author(s):  
Christel Sundberg ◽  
Martin Sjölin ◽  
Jacob Wikner ◽  
Christer Svensson ◽  
Mats Danielsson

2020 ◽  
Vol 65 (3) ◽  
pp. 035009
Author(s):  
Albert K Liang ◽  
Youcef El-Mohri ◽  
Qihua Zhao ◽  
Martin Koniczek ◽  
Larry E Antonuk

2020 ◽  
Vol 7 (05) ◽  
Author(s):  
Christel Sundberg ◽  
Mats Persson ◽  
Martin Sjölin ◽  
J. Jacob Wikner ◽  
Mats Danielsson

2002 ◽  
Vol 12 (3) ◽  
pp. 145-148
Author(s):  
C. Jorel ◽  
P. Feautrier ◽  
J.-C. Villégier ◽  
A. Benoit

Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Shijie Deng ◽  
Alan P. Morrison ◽  
Yong Guo ◽  
Chuanxin Teng ◽  
Ming Chen ◽  
...  

The design and implementation of a real-time breakdown voltage and on-chip temperature monitoring system for single photon avalanche diodes (SPADs) is described in this work. In the system, an on-chip shaded (active area of the detector covered by a metal layer) SPAD is used to provide a dark count rate for the breakdown voltage and temperature calculation. A bias circuit was designed to provide a bias voltage scanning for the shaded SPAD. A microcontroller records the pulses from the anode of the shaded SPAD and calculates its real-time dark count rate. An algorithm was developed for the microcontroller to calculate the SPAD’s breakdown voltage and the on-chip temperature in real time. Experimental results show that the system is capable of measuring the SPAD’s breakdown voltage with a mismatch of less than 1.2%. Results also show that the system can provide real-time on-chip temperature monitoring for the range of −10 to 50 °C with errors of less than 1.7 °C. The system proposed can be used for the real-time SPAD’s breakdown voltage and temperature estimation for dual-SPADs or SPAD arrays chip where identical detectors are fabricated on the same chip and one or more dummy SPADs are shaded. With the breakdown voltage and the on-chip temperature monitoring, intelligent control logic can be developed to optimize the performance of the SPAD-based photon counting system by adjusting the parameters such as excess bias voltage and dead-time. This is particularly useful for SPAD photon counting systems used in complex working environments such as the applications in 3D LIDAR imaging for geodesy, geology, geomorphology, forestry, atmospheric physics and autonomous vehicles.


Sign in / Sign up

Export Citation Format

Share Document