scholarly journals Three-dimensional laser printing of macro-scale glass objects at a micro-scale resolution

Author(s):  
Peng Wang ◽  
Wei Chu ◽  
Xiaolong Li ◽  
Zijie Lin ◽  
Jian Xu ◽  
...  
Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


Author(s):  
Huachao Mao ◽  
Yuen-Shan Leung ◽  
Yuanrui Li ◽  
Pan Hu ◽  
Wei Wu ◽  
...  

Current Stereolithography (SL) can fabricate three-dimensional (3D) objects in a single scale level, e.g. printing macro-scale or micro-scale objects. However, it is difficult for the SL printers to fabricate a 3D macro-scale object with micro-scale features. In the paper a novel SL-based multi-scale fabrication method is presented to address such a problem. The developed SL process can fabricate multi-scale features by dynamically changing the shape and size of a laser beam. Different shaped beams are realized by switching apertures with different micro-patterns. The laser beam without using any micro-patterns is used to fabricate the macro-scale features, while the shaped laser beams with smaller sizes are used to fabricate micro-patterned features. Accordingly, the tool path planning method for the multi-scale fabrication process are developed so that macro-scale and micro-scale features can be built by using different layer thicknesses, laser exposure time, and scanning paths. Compared with the conventional SL process based on a fixed laser beam size, our process can fabricate multi-scale features in a 3D object. It also has fast fabrication speed and good surface quality.


Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 71-87 ◽  
Author(s):  
Reza Sabbagh ◽  
Mohammad Amin Kazemi ◽  
Hirad Soltani ◽  
David S. Nobes

Flow measurement in porous media is a challenging subject, especially when it comes to performing a three-dimensional (3D) velocimetry at the micro scale. Volumetric flow measurement techniques such as defocusing and tomographic imaging generally involve rigorous procedures, complex experimental setups, and multi-part data processing procedures. However, detailed knowledge of the flow pattern at the pore and subpore scales is important in interpreting the phenomena that occur inside the porous media and understanding the macro-scale behaviors. In this work, the flow of an oil inside a porous medium is measured at the pore and subpore scales using refractive index matching (RIM) and shadowgraph imaging techniques. At the macro scale, flow is measured using the particle image velocimetry (PIV) method in two dimensions (2D) to confirm the volumetric nature of the flow and obtain the overall flow pattern in the vicinity of the flow entrance and at the far field. At the micro scale, the three-dimensional (3D) flow within an arbitrary volume of the porous medium was quantified using 2D particle-tracking velocimetry (PTV) utilizing the law of conservation of mass. Using the shadowgraphy method and a single camera makes the flow measurement much less complex than the approaches using laser light sheets or multiple cameras with multiple viewing angles.


Author(s):  
Ludwig Herrnböck ◽  
Paul Steinmann

AbstractThis work investigates the possibility of applying two-scale computational homogenization to rod lattice structures emerging, for instance, from additive manufacturing. The influence of the number of unit cells within the representative volume element (RVE), thus, the RVE’s size on the homogenized mechanical response is studied for occurring microscopic structural instabilities. Therein, the macro-scale, described in terms of three-dimensional continuum mechanics, is coupled to the micro-scale described by geometrically exact rods, enabling arbitrary large deformations and rotations. A special feature of the presented framework is that the rods building the lattice structures are not restricted to deform purely elastically but may deform inelastically. The mechanical response of lattice structures is investigated by applying the developed homogenization method to an exemplary lattice. Under special loads the structure reaches an instable state and may buckle. The appearance of instabilities depends on the geometric properties of the lattice’s underlying rods and the RVE’s size.


2021 ◽  
Vol 144 (1) ◽  
Author(s):  
Shengyu You ◽  
Jinyuan Tang ◽  
Yuqin Wen

Abstract The micro-surface asperity scale of grinding metal parts is within several microns. When two grinding surfaces are in contact, the unevenness of the plastic deformation of the asperities at the micro-scale leads to greater plastic hardening strength of the material. The results of the nano-indentation experiment conducted in this paper confirmed this phenomenon. Based on conventional mechanism-based strain gradient (CMSG) plasticity theory, the micro-scale plastic constitutive equation of materials is given and then is verified by the nano-indentation experiment. Finite element software abaqus and the user-defined element (UEL) subroutine are used to build three-dimensional rough surface elastoplastic contact models. By calculating the grinding rough surface contact in the macro-scale constitutive model based on J2 theory and in the CMSG plasticity constitutive model, the influence law of plastic micro-scale effect on contact performance is obtained.


Author(s):  
Feng Li ◽  
Gulnigar Ablat ◽  
Siqi Zhou ◽  
Yixin Liu ◽  
Yufeng Bi ◽  
...  

AbstractIn ice and snow weather, the surface texture characteristics of asphalt pavement change, which will significantly affect the skid resistance performance of asphalt pavement. In this study, five asphalt mixture types of AC-5, AC-13, AC-16, SMA-13, SMA-16 were prepared under three conditions of the original state, ice and snow. In this paper, a 2D-wavelet transform approach is proposed to characterize the micro and macro texture of pavement. The Normalized Energy (NE) is proposed to describe the pavement texture quantitatively. Compared with the mean texture depth (MTD), NE has the advantages of full coverage, full automation and wide analytical scale. The results show that snow increases the micro-scale texture because of its fluffiness, while the formation of the ice sheets on the surface reduces the micro-scale texture. The filling effect of snow and ice reduces the macro-scale texture of the pavement surface. In a follow-up study, the 2D-wavelet transform approach can be applied to improve the intelligent driving braking system, which can provide pavement texture information for the safe braking strategy of driverless vehicles.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daisuke Sato ◽  
Taizo Masuda ◽  
Kenji Araki ◽  
Masafumi Yamaguchi ◽  
Kenichi Okumura ◽  
...  

AbstractStretchable photovoltaics are emerging power sources for collapsible electronics, biomedical devices, and buildings and vehicles with curved surfaces. Development of stretchable photovoltaics are crucial to achieve rapid growth of the future photovoltaic market. However, owing to their rigidity, existing thin-film solar cells based predominantly on silicon, compound semiconductors, and perovskites are difficult to apply to 3D curved surfaces, which are potential real-world candidates. Herein, we present a stretchable micro-scale concentrator photovoltaic module with a geometrical concentration ratio of 3.5×. When perfectly fitted on a 3D curved surface with a sharp curvature, the prototype module achieves an outdoor power conversion efficiency of 15.4% and the daily generated electricity yield improves to a maximum of 190% relative to a non-concentration stretchable photovoltaic module. Thus, this module design enables high areal coverage on 3D curved surfaces, while generating a higher electricity yield in a limited installation area.


2006 ◽  
Vol 12 (4) ◽  
pp. 461-485 ◽  
Author(s):  
Keisuke Suzuki ◽  
Takashi Ikegami

We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.


Author(s):  
Zhenping Liu ◽  
James C. Hill ◽  
Rodney O. Fox ◽  
Michael G. Olsen

Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles through rapidly mixing a saturated solution and a non-solvent. Multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide both rapid mixing and the flexibility of inlet flow conditions. Until recently, only micro-scale MIVRs have been demonstrated to be effective in FNP. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in the industry. In the present research, turbulent mixing inside a scaled-up, macro-scale MIVR was measured by stereoscopic particle image velocimetry (SPIV). Reynolds number of this reactor is defined based on the bulk inlet velocity, ranging from 3290 to 8225. It is the first time that the three-dimensional velocity field of a MIVR was experimentally measured. The influence of Reynolds number on mean velocity becomes more linear as Reynolds number increases. An analytical vortex model was proposed to well describe the mean velocity profile. The turbulent characteristics such as turbulent kinematic energy and Reynolds stress are also presented. The wandering motion of vortex center was found to have a significant contribution to the turbulent kinetic energy of flow near the center area.


Sign in / Sign up

Export Citation Format

Share Document