Surface strain analysis of bending polymer films for flexible electronics and soft robotics

Author(s):  
Atsushi Shishido
1970 ◽  
Vol 5 (3) ◽  
pp. 162-168 ◽  
Author(s):  
A Luxmoore ◽  
R Hermann

Some commercial photoresists have been examined to assess their suitability for use with the moiré method of surface-strain measurement. As most of these materials do not produce a pattern of high contrast directly, some etching and plating procedures are also described. Combined with correct illumination, these processes will produce grids of sufficient contrast for most applications.


2018 ◽  
Vol 30 (7) ◽  
pp. 1870046 ◽  
Author(s):  
Benjamin E. Treml ◽  
Ruel N. McKenzie ◽  
Philip Buskohl ◽  
David Wang ◽  
Michael Kuhn ◽  
...  
Keyword(s):  

Author(s):  
Melissa M. Dann ◽  
Sydney Q. Clark ◽  
Natasha A. Trzaskalski ◽  
Conner C. Earl ◽  
Luke E. Schepers ◽  
...  

Background: Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via 2D echocardiographic akinetic length and 4D echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Methods: Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2D and 4D echocardiography. Infarct size established via histology was compared to ultrasound-based metrics via linear regression analysis. Results: 2D echocardiographic akinetic length (r = 0.76, p = 0.03), 4D echocardiographic infarct volume (r = 0.85, p = 0.008) and surface area (r = 0.90, p = 0.002) correlate well with histology. While both 2D and 4D echocardiography were reliable measurement techniques to assess infarct, 4D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, p < 0.001, transmural thickness: r = 0.76, p = 0.001). Conclusions: 2D echocardiographic akinetic length, 4D echocardiography ultrasound and strain provide effective in vivo methods for measuring fibrotic scarring after MI.


Soft Matter ◽  
2018 ◽  
Vol 14 (5) ◽  
pp. 765-772 ◽  
Author(s):  
Jheng-Wun Su ◽  
Xiang Tao ◽  
Heng Deng ◽  
Cheng Zhang ◽  
Shan Jiang ◽  
...  

There is a significant need of advanced materials that can be fabricated into functional devices with defined three-dimensional (3D) structures for application in tissue engineering, flexible electronics, and soft robotics.


Author(s):  
Pengcheng Wu ◽  
Lu-yu Zhou ◽  
Shang Lv ◽  
JianZhong Fu ◽  
Yong He

Liquid-metal (LM)-based flexible and stretchable electronics have attracted widespread interest in soft robotics, self-powered devices and electronic skins. Although nanometerization can facilitate deposition and patterning of LMs onto substrates, subsequent...


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1002
Author(s):  
Hongxing Wang ◽  
Feng Qiu ◽  
Chenbao Lu ◽  
Jinhui Zhu ◽  
Changchun Ke ◽  
...  

The preparation of redox-active, ultrathin polymer films as the electrode materials represents a major challenge for miniaturized flexible electronics. Herein, we demonstrated a liquid–liquid interfacial polymerization approach to a coordination polymer films with ultrathin thickness from tri(terpyridine)-based building block and iron atoms. The as-synthesized polymer films exhibit flexible properties, good redox-active and narrow bandgap. After directly transferred to silicon wafers, the on-chip micro-supercapacitors of TpPB-Fe-MSC achieved the high specific capacitances of 1.25 mF cm−2 at 50 mV s−1 and volumetric energy density of 5.8 mWh cm−3, which are superior to most of semiconductive polymer-based micro-supercapacitor (MSC) devices. In addition, as-fabricated on-chip MSCs exhibit typical alternating current (AC) line-filtering performance (−71.3° at 120 Hz) and a short resistance–capacitance (RC) time (0.06 ms) with the electrolytes of PVA/LiCl. This study provides a simple interfacial approach to redox-active polymer films for microsized energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document