A new method for determining surface roughness based on the improvement of the kinematics of the milling cutter movement during micro-cutting

2021 ◽  
Author(s):  
Petr M. Pivkin ◽  
Artem A. Ershov ◽  
Sergey V. Fedorov ◽  
Olga V. Zhed ◽  
Vladimir R. Kuptsov ◽  
...  
2018 ◽  
Vol 108 (11-12) ◽  
pp. 773-777
Author(s):  
E. Uhlmann ◽  
J. Polte ◽  
M. Polte ◽  
Y. Kuche ◽  
H. Wiesner

Die Mikrozerspanung ist eine Kerntechnologie bei der Fertigung von Mikrospritzgussformen. Die hohen Ansprüche an die geometrische Genauigkeit und Oberflächenrauheit erfordern den Einsatz hochfester Werkstoffe. Jedoch unterliegen aktuelle Fräswerkzeuge bei der Mikrozerspanung einem hohen Verschleiß. Einen Lösungsansatz bietet der erfolgreich in der Makrozerspanung eingesetzte Schneidstoff kubisch-kristallines Bornitrid (cBN). Ziel der Untersuchungen war es daher, detaillierte Informationen zur Bearbeitung von gehärtetem Stahl mit cBN-Mikrofräswerkzeugen bereitstellen zu können.   Micro-cutting is a core technology for producing micro-injection moulds. High demands on geometric accuracy and surface roughness require high-strength materials. However, current milling tools for micro-cutting suffer from excessiv tool wear. A solution is offered by cutting materials based on cubic Boron Nitride (cBN), which have been used successfully in macro-machining. This article contains detailed information on the machining of hardened steel with micro-milling tools and cutting edges made of cBN.


2014 ◽  
Vol 651-653 ◽  
pp. 764-767
Author(s):  
Tao Zhang ◽  
Hou Jun Qi ◽  
Gen Li

Micro cutting is a promising manufacturing method to obtain good surface integrity. Surface roughness shows size effect when the uncut chip thickness is smaller than the cutting edge radius. A special micro slot on the flank face of cutting tools was manufactured with discharge. Two groups of micro orthogonal cutting were conducted. The surface roughness of machined surface was measured and compared to each other. The results show that surface roughness decreases first and then increases with the ratio of uncut chip thickness to cutting edge radius. The surface machined with micro slot is better than that of without micro slot due to the micro slot restrain the back side flow of work piece based on the finite element model.


2016 ◽  
Vol 686 ◽  
pp. 119-124 ◽  
Author(s):  
Balázs Mikó

The machining of free form surfaces is a current and important issue in die and mould industry. Beside the complex geometry, an accurate and productive machining and good surface quality are needed. The finishing milling carried out by a ball-end or toroid milling cutter defines the surface quality, which is characterized by the surface roughness and the tool path trace. The surface quality is defined by the properties of the milling cutter, the type of surface and its position, as well as the cutting parameters. This article focuses on the z-level milling of steep surfaces by 2.5D milling strategy. The importance of the different elements of the tool path is presented, the effect of cutting parameters is investigated, and a formula to predict the surface roughness is suggested.


Author(s):  
Kazutoshi NAKAMURA ◽  
Fumihiro ITOIGAWA ◽  
Takashi NAKAMURA ◽  
Makoto NAKASAI

2002 ◽  
Vol 729 ◽  
Author(s):  
Karen C. Cheung ◽  
Yang-Kyu Choi ◽  
Tim Kubow ◽  
Luke P. Lee

AbstractWe present a new method of increasing the effective electrode surface for improved neural recording. To optimize the electrode, the impedance can be decreased by introducing surface roughness or nanostructures on the electrode. High aspect ratio pillar-like polysilicon nanostructures are created in a reactive ion etch. Nanostructure robustness in cell culture is examined.


Sign in / Sign up

Export Citation Format

Share Document