FDTD simulations of local plasmonic fields for core/shell gold and silver nanorods

2021 ◽  
Author(s):  
Igor Kon ◽  
Andrey Y. Zyubin ◽  
Alexey Seteikin ◽  
Ilia G. Samusev
2018 ◽  
Vol 1 (10) ◽  
pp. 5589-5600 ◽  
Author(s):  
Gourab Bhattacharjee ◽  
Maireyee Bhattacharya ◽  
Abhijit Roy ◽  
Dulal Senapati ◽  
Biswarup Satpati

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 633
Author(s):  
Ehsan Vahidzadeh ◽  
Karthik Shankar

The substitution of time- and labor-intensive empirical research as well as slow finite difference time domain (FDTD) simulations with revolutionary techniques such as artificial neural network (ANN)-based predictive modeling is the next trend in the field of nanophotonics. In this work, we demonstrated that neural networks with proper architectures can rapidly predict the far-field optical response of core–shell plasmonic metastructures. The results obtained with artificial neural networks are comparable with FDTD simulations in accuracy but the speed of obtaining them is between 100–1000 times faster than FDTD simulations. Further, we have proven that ANNs does not have problems associated with FDTD simulations such as dependency of the speed of convergence on the size of the structure. The other trend in photonics is the inverse design problem, where the far-field optical response of a spherical core–shell metastructure can be linked to the design parameters such as type of the material(s), core radius, and shell thickness using a neural network. The findings of this paper provide evidence that machine learning (ML) techniques such as artificial neural networks can potentially replace time-consuming finite domain methods in the future.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2015 ◽  
Vol 53 (4) ◽  
pp. 287-293
Author(s):  
Byung-Hyun Choi ◽  
Young Jin Kang ◽  
Sung-Hun Jung ◽  
Yong-Tae An ◽  
Mi-Jung Ji

2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Sign in / Sign up

Export Citation Format

Share Document