Spectral and depolarization ratios for atmospheric ice particles of hexagonal and arbitrary shape within the framework of the physical optics and discrete dipoles

2021 ◽  
Author(s):  
Nikolay G. Bulakhov ◽  
Alexander V. Konoshonkin ◽  
Ilya V. Tkachev ◽  
Dmitriy N. Timofeev ◽  
Victor A. Shishko ◽  
...  
2020 ◽  
Vol 237 ◽  
pp. 08012
Author(s):  
Victor Shishko ◽  
Alexander Konoshonkin ◽  
Natalia Kustova ◽  
Anatoli Borovoi ◽  
Dmitry Timofeev

The work presents the solution for the light scattering problem by arbitrarily-shaped particles in the vicinity of the backward scattering direction. The solution was obtained within the framework of the geometrical optics approximation. The refractive index was equal to 1.3116. It was shown that the general contribution of scattering light for arbitrarily-shaped particles in the vicinity of the backscattering direction consists of the specular reflection of the particles and two types of non-specular optical beams. It is shown that the optical characteristics of the ice particles with arbitrary shapes correspond to experimental data.


2016 ◽  
Author(s):  
L. Belegante ◽  
J. A. Bravo-Aranda ◽  
V. Freudenthaler ◽  
D. Nicolae ◽  
A. Nemuc ◽  
...  

Abstract. Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components, but only if the measurements are accurate enough. The uncertainties related to the retrieval of particle depolarization ratios are the main factor in determining the accuracy of the derived parameters in such studies. This paper presents an extended analysis of different depolarization calibration procedures, in order to reduce the related uncertainties. The calibration procedures are specific to each lidar system of the European Aerosol Research Lidar Network – EARLINET with polarising capabilities. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations. The calibrated volume and particle depolarization profiles at 532 nm show values that agree with the theory for all selected atmospheric constituents (several aerosol species, ice particles and molecules in the aerosol free regions).


2007 ◽  
Vol 46 (20) ◽  
pp. 4465 ◽  
Author(s):  
Mathieu Nicolet ◽  
Olaf Stetzer ◽  
Ulrike Lohmann

Sign in / Sign up

Export Citation Format

Share Document