Raman spectroscopy: probing the border between near-field and far-field spectroscopy

1998 ◽  
Author(s):  
Hans D. Hallen ◽  
Michael A. Paesler ◽  
Catherine L. Jahncke
2020 ◽  
Author(s):  
Won-Geun Kim ◽  
Jongmin Lee ◽  
Vasanthan Devaraj ◽  
Minjun Kim ◽  
Hyuk Jeong ◽  
...  

Abstract Plasmonic nanoparticle clusters promise to support various, unique artificial electromagnetisms at optical frequencies, realizing new concept devices for diverse nanophotonic applications. However, the technological challenges associated with the fabrication of plasmonic clusters with programmed geometry and composition remain unresolved. Here, we present a freeform fabrication of hierarchical plasmonic clusters (HPCs) based on omnidirectional guiding of evaporative self-assembly of gold nanoparticles (AuNPs) with the aid of 3D printing. Our method offers a facile, universal route to shape the multiscale features of HPCs in three-dimensions, leading to versatile manipulation of both far-field and near-field characteristics. Various functional nanomaterials can be effectively coupled to plasmonic modes of the HPCs by simply mixing with AuNP ink. We demonstrate in particular an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes. This SERS microplatform could pave the way towards simple, innovative detection methods of diverse pathogens, which is in high demand for handling pandemic situations. We expect our method to freely design and realize nanophotonic structures beyond the restrictions of traditional fabrication processes. Plasmonic nanoparticle clusters have attracted great attention due to the unique capability to manipulate electromagnetic fields at the sub-wavelength scale1–5. Ensembles of metallic nanoparticles generate various electromagnetisms at optical frequencies such as artificial magnetism6–10 and Fano-like interference11–13 and a strong field localization in the structure14–16. These unique properties are geometry-dependent and lead to a broad range of applications in sensing16,17, surface-enhanced spectroscopies18–22, nonlinear integrated photonics23,24, and light harvesting25,26. Traditionally, plasmonic clusters with tailored size and geometry are fabricated on substrates by top-down processes such as electron-beam lithography4,5 or focused-ion beam milling27,28. These approaches suffer from low throughput and are generally limited to in-plane fabrication. Alternatively, the self-assembly of colloids has been proposed as a versatile, high-throughput, and cost-effective route. A number of clever methods based on chemical linking (e.g., DNA origami)29–30 and/or convective assembly on lithographically structured templates25,26,31 have been devised to construct 2D or 3D plasmonic clusters. The shape formation, however, is mostly constrained by the thermodynamic impetus and/or template geometry. A significant challenge would be overcome these restrictions and expand structural design freedom in the fabrication of plasmonic cluster architectures with symmetry-breaking geometries. In this work, we develop a freeform, programmable 3D assembly of of hierarchical plasmonic clusters (HPCs). By exploiting micronozzle 3D printing, we demonstrate highly localized, omnidirectional meniscus-guided assembly of metallic nanoparticles, constructing a freestanding HPC with a tailored geometry that can control the far-field character. Our approach also allows versatile manipulation and exploitation of the near-field interaction in the HPC by a facile heterogeneous nanoparticle mixing. We demonstrate that 3D-printed HPCs can be utilized as an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes.


2020 ◽  
Vol 74 (7) ◽  
pp. 780-790
Author(s):  
Dominik J. Winterauer ◽  
Daniel Funes-Hernando ◽  
Jean-Luc Duvail ◽  
Saïd Moussaoui ◽  
Tim Batten ◽  
...  

This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the undistorted spectral information. The resolving power of this technique is demonstrated on Raman spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and [Formula: see text] better than regular far-field Raman spectroscopy, and comparable to near-field probing techniques.


2016 ◽  
Vol 28 (15) ◽  
pp. 2931-2938 ◽  
Author(s):  
Xiaoxia Yang ◽  
Feng Zhai ◽  
Hai Hu ◽  
Debo Hu ◽  
Ruina Liu ◽  
...  

Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

Author(s):  
Jay Anderson ◽  
Mustafa Kansiz ◽  
Michael Lo ◽  
Curtis Marcott

Abstract Failure analysis of organics at the microscopic scale is an increasingly important requirement, with traditional analytical tools such as FTIR and Raman microscopy, having significant limitations in either spatial resolution or data quality. We introduce here a new method of obtaining Infrared microspectroscopic information, at the submicron level in reflection (far-field) mode, called Optical-Photothermal Infrared (O-PTIR) spectroscopy, that can also generate simultaneous Raman spectra, from the same spot, at the same time and with the same spatial resolution. This novel combination of these two correlative techniques can be considered to be complimentary and confirmatory, in which the IR confirms the Raman result and vice-versa, to yield more accurate and therefore more confident organic unknowns analysis.


1998 ◽  
Vol 38 (10) ◽  
pp. 323-330
Author(s):  
Philip J. W. Roberts

The results of far field modeling of the wastefield formed by the Sand Island, Honolulu, ocean outfall are presented. A far field model, FRFIELD, was coupled to a near field model, NRFIELD. The input data for the models were long time series of oceanographic observations over the whole water column including currents measured by Acoustic Doppler Current Profilers and density stratification measured by thermistor strings. Thousands of simulations were made to predict the statistical variation of wastefield properties around the diffuser. It was shown that the visitation frequency of the wastefield decreases rapidly with distance from the diffuser. The spatial variation of minimum and harmonic average dilutions was also predicted. Average dilution increases rapidly with distance. It is concluded that any impact of the discharge will be confined to a relatively small area around the diffuser and beach impacts are not likely to be significant.


Sign in / Sign up

Export Citation Format

Share Document