scholarly journals Nanoscale Spatial Resolution in Far-Field Raman Imaging Using Hyperspectral Unmixing in Combination with Positivity Constrained Super-Resolution

2020 ◽  
Vol 74 (7) ◽  
pp. 780-790
Author(s):  
Dominik J. Winterauer ◽  
Daniel Funes-Hernando ◽  
Jean-Luc Duvail ◽  
Saïd Moussaoui ◽  
Tim Batten ◽  
...  

This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the undistorted spectral information. The resolving power of this technique is demonstrated on Raman spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and [Formula: see text] better than regular far-field Raman spectroscopy, and comparable to near-field probing techniques.

2007 ◽  
Vol 21 (08n09) ◽  
pp. 1649-1653
Author(s):  
CONSTANTINOS SIMSERIDES ◽  
ANNA ZORA ◽  
GEORGIOS TRIBERIS

We examine a quantum dot (QD) illuminated in the near field with subwavelength spatial resolution, while simultaneously it is subjected to a magnetic field of variable orientation and magnitude. The magnetic field orientation can conserve or destroy the zero-magnetic-field ("structural") symmetry. The asymmetry induced by the magnetic field -except for specific orientations along symmetry axes- can be uncovered in the near-field (NF) but not in the far-field (FF) spectra. We predict that NF magnetoabsorption experiments of realistic spatial resolution could reveal the QD symmetry. This exceptional symmetry-resolving power of the near-field optics, is lost in the far field.


Author(s):  
Jay Anderson ◽  
Mustafa Kansiz ◽  
Michael Lo ◽  
Curtis Marcott

Abstract Failure analysis of organics at the microscopic scale is an increasingly important requirement, with traditional analytical tools such as FTIR and Raman microscopy, having significant limitations in either spatial resolution or data quality. We introduce here a new method of obtaining Infrared microspectroscopic information, at the submicron level in reflection (far-field) mode, called Optical-Photothermal Infrared (O-PTIR) spectroscopy, that can also generate simultaneous Raman spectra, from the same spot, at the same time and with the same spatial resolution. This novel combination of these two correlative techniques can be considered to be complimentary and confirmatory, in which the IR confirms the Raman result and vice-versa, to yield more accurate and therefore more confident organic unknowns analysis.


2013 ◽  
Vol 102 (1) ◽  
pp. 013104 ◽  
Author(s):  
Xiang Hao ◽  
Xu Liu ◽  
Cuifang Kuang ◽  
Yanghui Li ◽  
Yulong Ku ◽  
...  

2020 ◽  
Author(s):  
Won-Geun Kim ◽  
Jongmin Lee ◽  
Vasanthan Devaraj ◽  
Minjun Kim ◽  
Hyuk Jeong ◽  
...  

Abstract Plasmonic nanoparticle clusters promise to support various, unique artificial electromagnetisms at optical frequencies, realizing new concept devices for diverse nanophotonic applications. However, the technological challenges associated with the fabrication of plasmonic clusters with programmed geometry and composition remain unresolved. Here, we present a freeform fabrication of hierarchical plasmonic clusters (HPCs) based on omnidirectional guiding of evaporative self-assembly of gold nanoparticles (AuNPs) with the aid of 3D printing. Our method offers a facile, universal route to shape the multiscale features of HPCs in three-dimensions, leading to versatile manipulation of both far-field and near-field characteristics. Various functional nanomaterials can be effectively coupled to plasmonic modes of the HPCs by simply mixing with AuNP ink. We demonstrate in particular an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes. This SERS microplatform could pave the way towards simple, innovative detection methods of diverse pathogens, which is in high demand for handling pandemic situations. We expect our method to freely design and realize nanophotonic structures beyond the restrictions of traditional fabrication processes. Plasmonic nanoparticle clusters have attracted great attention due to the unique capability to manipulate electromagnetic fields at the sub-wavelength scale1–5. Ensembles of metallic nanoparticles generate various electromagnetisms at optical frequencies such as artificial magnetism6–10 and Fano-like interference11–13 and a strong field localization in the structure14–16. These unique properties are geometry-dependent and lead to a broad range of applications in sensing16,17, surface-enhanced spectroscopies18–22, nonlinear integrated photonics23,24, and light harvesting25,26. Traditionally, plasmonic clusters with tailored size and geometry are fabricated on substrates by top-down processes such as electron-beam lithography4,5 or focused-ion beam milling27,28. These approaches suffer from low throughput and are generally limited to in-plane fabrication. Alternatively, the self-assembly of colloids has been proposed as a versatile, high-throughput, and cost-effective route. A number of clever methods based on chemical linking (e.g., DNA origami)29–30 and/or convective assembly on lithographically structured templates25,26,31 have been devised to construct 2D or 3D plasmonic clusters. The shape formation, however, is mostly constrained by the thermodynamic impetus and/or template geometry. A significant challenge would be overcome these restrictions and expand structural design freedom in the fabrication of plasmonic cluster architectures with symmetry-breaking geometries. In this work, we develop a freeform, programmable 3D assembly of of hierarchical plasmonic clusters (HPCs). By exploiting micronozzle 3D printing, we demonstrate highly localized, omnidirectional meniscus-guided assembly of metallic nanoparticles, constructing a freestanding HPC with a tailored geometry that can control the far-field character. Our approach also allows versatile manipulation and exploitation of the near-field interaction in the HPC by a facile heterogeneous nanoparticle mixing. We demonstrate that 3D-printed HPCs can be utilized as an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes.


2004 ◽  
Vol 40 (2) ◽  
pp. 175-179 ◽  
Author(s):  
P. Fretwell ◽  
I. R. Peterson ◽  
D. E. Smith

SynopsisThe behaviour of the Earth's continental crust and mantle may be modelled as a buoyant floating plate on a viscous liquid, and the variations of load imposed by an ice sheet may be modelled as a time-dependent force. In recent work it has been shown that the mathematical solution of this problem can be subdivided into a propagating far-field forebulge term and a non-propagating near-field term. The latter often dominates and can be approximated satisfactorily by a generalized Gaussian function. Here we fit empirical data from the Main Postglacial Shoreline of northern Britain to a Gaussian trend surface. We show that the fit is significantly better than that of a polynomial trend surface previously published, and that the method has the potential to predict the likely sea surface level offshore at the zero isobase for the shoreline.


1997 ◽  
Vol 3 (S2) ◽  
pp. 817-818
Author(s):  
Fran Adar ◽  
Roussel Bernard ◽  
Alian Wang ◽  
Shari Hawi ◽  
Kasem Nithipathikom

Chemical imaging of complex multi-component materials has important potential for the analyst in many fields of research. Raman imaging is of particular interest for several reasons. The Raman spectra contain detailed information on chemical species and crystalline phase. Because the Raman effect is excited by optical radiation, the spatial resolution, which is proportional to the wavelength of the light, is better than 1 μm. and with near field optical techniques currently under development, there is potential for even higher spatial resolution in the chemical image.The methods used to produce an image fall into essentially two categories - global imaging and confocal mapping. When creating global images, a large area of the sample is bathed in laser light. The light scattered by the sample is filtered to select a Raman band, and then that light is used to create an image of the sample on a two-dimensional detector.


Author(s):  
E. Betzig ◽  
M. Isaacson ◽  
A. Lewis ◽  
K. Lin

The spatial resolution of most of the imaging or microcharacterization methods presently in use are fundamentally limited by the wavelength of the exciting or the emitted radiation being used. In general, the smaller the wavelength of the exciting probe, the greater the structural damage to the sample under study. Thus, the requirements of minimal sample alteration and high spatial resolution seem to be at odds with one another.However, the reason for this wavelength resolution limit is due to the far field methods for producing or detecting the radiation of interest. If one does not use far field optics, but rather the method of near field imaging, the spatial resolution attainable can be much smaller than the wavelength of the radiation used. This method of near field imaging has a general applicability for all wave probes.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Motohiro Tomita ◽  
Hiroki Hashiguchi ◽  
Takuya Yamaguchi ◽  
Munehisa Takei ◽  
Daisuke Kosemura ◽  
...  

We demonstrate the results of a strain (stress) evaluation obtained from Raman spectroscopy measurements with the super-resolution method (the so-called super-resolution Raman spectroscopy) for a Si substrate with a patterned SiN film (serving as a strained Si sample). To improve the spatial resolution of Raman spectroscopy, we used the super-resolution method and a high-numerical-aperture immersion lens. Additionally, we estimated the spatial resolution by an edge force model (EFM) calculation. One- and two-dimensional stress distributions in the Si substrate with the patterned SiN film were obtained by super-resolution Raman spectroscopy. The results from both super-resolution Raman spectroscopy and the EFM calculation were compared and were found to correlate well. The best spatial resolution, 70 nm, was achieved by super-resolution Raman measurements with an oil immersion lens. We conclude that super-resolution Raman spectroscopy is a useful method for evaluating stress in miniaturized state-of-the-art transistors, and we believe that the super-resolution method will soon be a requisite technique.


Sign in / Sign up

Export Citation Format

Share Document