Polarimetric processing techniques for coherent stepped-frequency ground-penetrating radar systems: applications toward detection of buried utilities

1999 ◽  
Author(s):  
Ram M. Narayanan ◽  
Randall T. Becker ◽  
Michael B. Bashforth
Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2234 ◽  
Author(s):  
Danijel Šipoš ◽  
Dušan Gleich

This paper presents the development of a lightweight and low-power Ground Penetrating Radar (GPR) to detect buried landmines in harsh terrain, using an Unmanned Aerial Vehicle (UAV). Despite the fact that GPR airborne systems have been already used for a while, there has yet been no focus on the UAV autonomy, which depends on the payload itself. Therefore, the contribution of this work is the introduction of a lightweight and low-power consumption GPR system, which is based on the Stepped Frequency Continuous Wave (SFCW) radar principle. The Radio Frequency (RF) transceiver represents an improved implementation of the super-heterodyne architecture, which currently offers higher sensitivity. This is achieved by combining analog and digital processing techniques. The experimental results showed that the developed system can detect both metallic and plastic buried targets. Target detection with a scanning height up to about 0.5 m shows good applicability in an unstructured, harsh environment, which is typical of mined terrain. The proposed system still needs some improvements for a fully operational system regarding different aspects of scanning speeds and soil properties such as moisture content.


2020 ◽  
Author(s):  
Livia Lantini ◽  
Fabio Tosti ◽  
Iraklis Giannakis ◽  
Kevin Jagadissen Munisami ◽  
Dale Mortimer ◽  
...  

<p>Street trees are widely recognised to be an essential asset for the urban environment, as they bring several environmental, social and economic benefits [1]. However, the conflicting coexistence of tree root systems with the built environment, and especially with road infrastructures, is often cause of extensive damage, such as the uplifting and cracking of sidewalks and curbs, which could seriously compromise the safety of pedestrians, cyclists and drivers.</p><p>In this context, Ground Penetrating Radar (GPR) has long been proven to be an effective non-destructive testing (NDT) method for the evaluation and monitoring of road pavements. The effectiveness of this tool lies not only in its ease of use and cost-effectiveness, but also in the proven reliability of the results provided. Besides, recent studies have explored the capability of GPR in detecting and mapping tree roots [2]. Algorithms for the reconstruction of the tree root systems have been developed, and the spatial variations of root mass density have been also investigated [3].</p><p>The aim of this study is, therefore, to investigate the GPR potential in mapping the architecture of root systems in street trees. In particular, this research aims to improve upon the existing methods for detection of roots, focusing on the identification of the road pavement layers. In this way, different advanced signal processing techniques can be applied at specific sections, in order to remove reflections from the pavement layers without affecting root detection. This allows, therefore, to reduce false alarms when investigating trees with root systems developing underneath road pavements.</p><p>In this regard, data from trees of different species have been acquired and processed, using different antenna systems and survey methodologies, in an effort to investigate the impact of these parameters on the GPR overall performance.</p><p> </p><p><strong>Acknowledgements</strong></p><p>The authors would like to express their sincere thanks and gratitude to the following trusts, charities, organisations and individuals for their generosity in supporting this project: Lord Faringdon Charitable Trust, The Schroder Foundation, Cazenove Charitable Trust, Ernest Cook Trust, Sir Henry Keswick, Ian Bond, P. F. Charitable Trust, Prospect Investment Management Limited, The Adrian Swire Charitable Trust, The John Swire 1989 Charitable Trust, The Sackler Trust, The Tanlaw Foundation, and The Wyfold Charitable Trust. This paper is dedicated to the memory of our colleague and friend Jonathan West, one of the original supporters of this research project.</p><p> </p><p><strong>References</strong></p><p>[1] J. Mullaney, T. Lucke, S. J. Trueman, 2015. “A review of benefits and challenges in growing street trees in paved urban environments,” Landscape and Urban Planning, 134, 157-166.</p><p>[2] A. M. Alani, L. Lantini, 2019. “Recent advances in tree root mapping and assessment using non-destructive testing methods: a focus on ground penetrating radar,” Surveys in Geophysics, 1-42.</p><p>[3] L. Lantini, F. Tosti, Giannakis, I., Egyir, D., A. Benedetto, A. M. Alani, 2019. “A Novel Processing Framework for Tree Root Mapping and Density Estimation using Ground Penetrating Radar,” In 10th International Workshop on Advanced Ground Penetrating Radar, EAGE.</p>


2019 ◽  
Vol 11 (16) ◽  
pp. 1864 ◽  
Author(s):  
Anita Bernatek-Jakiel ◽  
Marta Kondracka

Soil piping leads to land degradation in almost all morphoclimatic regions. However, the detection of soil pipes is still a methodological challenge. Therefore, this study aims at testing ground penetrating radar (GPR) to identify soil pipes and to present the complexity of soil pipe networks. The GPR surveys were conducted at three sites in the Bieszczady Mountains (SE Poland), where pipes develop in Cambisols. In total, 36 GPR profiles longitudinal and transverse to piping systems were made and used to provide spatial visualization of pipe networks. Soil pipes were identified as reflection hyperbolas on radargrams, which were verified with the surface indicators of piping, i.e., sagging of the ground and the occurrence of pipe roof collapses. Antennas of 500 MHz and 800 MHz were tested, which made possible the penetration of the subsurface up to 3.2 m and 2 m, respectively. Concerning ground properties, antenna frequencies and processing techniques, there was a potential possibility to detect pipes with a minimum diameter of 3.5 cm (using the antenna of lower frequency), and 2.2 cm (with the antenna of higher frequency). The results have proved that soil pipes meander horizontally and vertically and their networks become more complicated and extensive down the slope. GPR is a useful method to detect soil pipes, although it requires field verification and the proper selection of antenna frequency.


Sign in / Sign up

Export Citation Format

Share Document