Photoemission and OBIRCH Analysis with Solid Immersion Lens (SIL)

Author(s):  
Ikuo Arata ◽  
Shigeru Sakamoto ◽  
Yoshiyuki Yokoyama ◽  
Hirotoshi Terada

Abstract SIL(Solid Immersion Lens) is well investigated for optical pickup application because of its capability of high resolution. We applied this technique to microscopy, especially for precise observation of semiconductors. And also we applied it to fault isolation techniques like emission microscopy , OBIRCH(Optical Beam Induced Resistance Change) and TIVA,SEI. We found significant enhancement of resolution and sensitvity by using SIL. Applying this technique to emission microscopy, we should be aware of optical absorption charactristics of SIL lens materials. We investigated proper SIL lens materials for emission microscopy and laser scanning applications, and checked performance of Si(Silicon)-SIL and GaP(Gallium phosphide)-SIL. We also compared combinations of some kinds of SILs and detectors like C-CCD(cooled CCD) camera, MCT(HgCdTe) camera and position sensitive detector with InGaAs photo cathode II(image intensifier).

Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


Author(s):  
Travis Eiles ◽  
Patrick Pardy

Abstract This paper demonstrates a breakthrough method of visible laser probing (VLP), including an optimized 577 nm laser microscope, visible-sensitive detector, and an ultimate-resolution gallium phosphide-based solid immersion lens on the 10 nm node, showing a 110 nm resolution. This is 2x better than what is achieved with the standard suite of probing systems using typical infrared (IR) wavelengths today. Since VLP provides a spot diameter reduction of 0.5x over IR methods, it is reasonable, based simply on geometry, to project that VLP using the 577 nm laser will meet the industry needs for laser probing for both the 10 nm and 7 nm process nodes. Based on its high level of optimization, including high resolution and specialized solid immersion lens, it is highly likely that this VLP technology will be one of the last optically-based fault isolation methods successfully used.


Author(s):  
Chi-Lin Huang ◽  
Yu Hsiang Shu

Abstract Conventional isolation techniques, such as Optical Beam Induced Resistance Change (OBIRCH) or photoemission microscopy (PEM) frequently fail to locate failure points when only applied to power pin of the semiconductor device. In this paper, a novel OBIRCH failure isolation technique is utilized to detect leakage failures. Different test conditions are presented to identify the differences in current when all input pins are pulled high in an OBIRCH system. In order to verify a failure point, it is necessary to perform electrical analysis of the suspected failure point in the failing sample. In general, Conductive Atomic Force Microscope (C-AFM) and a Nano-Prober is sufficient to provide the electrical data required for failure analysis. Experiment results, however, prove that this novel OBIRCH failure isolation technique is effective in locating the failure point, especially for leakage failures. The failure mechanism is illustrated using cross-sectional TEM.


2001 ◽  
Author(s):  
Naoki Saitoh ◽  
Kenro Kuroki ◽  
Kenji Kurosawa ◽  
Norimitsu Akiba

Author(s):  
Jim Douglass ◽  
Sohrab Pourmand

Abstract This paper shows that by combining electrical fault isolation and characterization by microprobing with physical fault isolation techniques both what is wrong with the circuit and where the defect is located can be determined with less microprobing and more safety from electrical recovery. In the first example, the unit was powered up using the optical beam induced resistance change (OBIRCH) supply, and OBIRCH was performed to determine if there were OBIRCH site differences between the good part and the return. The second example uses a combination of electrical fault isolation and characterization with microprobing and the physical fault isolation tool of lock in thermography (LIT). With these two examples, it has been shown that the use of electrical fault isolation and microprobing can be used to enhance the physical fault isolation tools of OBIRCH and LIT.


2008 ◽  
Author(s):  
Adric Eckstein ◽  
Pavlos Vlachos

Micro-PIV experiments rely upon the use of a microscope to achieve the higher spatial resolution. However, several optical limitations are introduced at these scales [1–3]. In addition, due to the low illumination levels, micro-PIV experiments require the use of either a cooled CCD camera or an image intensifier to provide increased signal-to-noise ratio. Although CCD cameras offer superior sensitivity and signal to noise ratio, intensified CMOS cameras offer an attractive alternative for performing high frequency measurements. However, intensified cameras are known to introduce artifacts such as added background noise. This study examines these issues and the feasibility of employing such technologies for microPIV through the use of the IDT-X5 intensified CMOS camera, capable of 500 Hz at a resolution of 2352×1728 pixels, with pulse separations as low as 2μs.


Author(s):  
Tommaso Melis ◽  
Emmanuel Simeu ◽  
Etienne Auvray

Abstract Getting accurate fault isolation during failure analysis is mandatory for success of Physical Failure Analysis (PFA) in critical applications. Unfortunately, achieving such accuracy is becoming more and more difficult with today’s diagnosis tools and actual process node such as BCD9 and FinFET 7 nm, compromising the success of subsequent PFA done on defective SoCs. Electrical simulation is used to reproduce emission microscopy, in our previous work and, in this paper, we demonstrate the possibility of using fault simulation tools with the results of electrical test and fault isolation techniques to provide diagnosis with accurate candidates for physical analysis. The experimental results of the presented flow, from several cases of application, show the validity of this approach.


Author(s):  
Ryan Fredrickson ◽  
Tim Kuebrich ◽  
Andrew Le ◽  
Derek Snider ◽  
Lucas Winiarski

Abstract Fault isolation is an important initial component of the failure analysis investigation as it provides the first indicator of the defect physical location. The most broadly familiar fault isolation techniques include photoemission microscopy (PEM), optical beam induced resistance change (OBIRCH) and liquid crystal analysis (LCA). Each of these techniques has their own strengths but also drawbacks which can impede the analysis by either not providing a well isolated defect location or causing damage to the defect region. For some types of defects, photoemission and liquid crystal analysis may create local heating of the device which can distort the defect and mask the root cause of the failure. These techniques also rely on optical microscopy which has low resolution compared to the feature size of current technologies. In addition, each technique may not highlight the defect site itself; only pointing the analyst to the defective circuit within the sample. Electron Beam Induced Current (EBIC) and Electron Beam Absorbed Current (EBAC) microscopy provides solutions to these complications. In this paper we describe some very effective approaches by using these beam-based techniques in conjunction with traditional methods. As introduction, we have provided some interesting case studies whereby EBIC/EBAC have been used in conjunction with FIB circuit edits and scan diagnostic results to narrow the defect search areas. We focus the paper on some less common applications of cross sectional EBIC/EBAC as well as utilizing an AC coupled configuration to activate more subtle defect sites. We conclude with two examples where AC coupled cross-sectional EBIC is needed to highlight the cause of the failure.


Author(s):  
S.H. Goh ◽  
J.Y. Cho ◽  
Jeffrey Lam ◽  
J.C.H. Phang

Abstract In this paper, a mobile Diffractive Solid Immersion Lens (mDSIL) design is proposed to enhance spatial resolution for backside laser fault isolation techniques. By allowing for multiple failure sites analysis using a single DSIL, this design improves conventional static DSIL directly fabricated on silicon substrate. The feasibility of mDSIL is demonstrated experimentally and the resolution performance is shown to be comparable to a static DSIL.


Sign in / Sign up

Export Citation Format

Share Document