Intelligent wind vibration control of high-rise buildings using MR dampers

2006 ◽  
Author(s):  
Shi Yan ◽  
Wei Zheng ◽  
Gangbing Song
2007 ◽  
Vol 2007.13 (0) ◽  
pp. 11-12
Author(s):  
Shingo MITANI ◽  
Shigeru INABA ◽  
Chinori IIO ◽  
Fadi DOHNAL ◽  
Kazuto SETO ◽  
...  

Author(s):  
Shigeru INABA ◽  
Chinori IIO ◽  
Shingo MITANI ◽  
Toru WATANABE ◽  
Kazuto SETO

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianda Yu ◽  
Zhibo Duan ◽  
Xiangqi Zhang ◽  
Jian Peng

Based on the vibration reduction mechanism of compound damping cables, this study focuses on the wind-induced vibration control of high-rise structures with additional mass at the top. The differential equation of motion of the system under the action of the composite damping cable is established, and the analytical solution of the additional damping ratio of the structure is deduced, which is verified by model tests. The vibration response of the structure under the action of simple harmonic vortex excitation and randomly fluctuating wind loads is studied, and the effect of different viscous coefficients of the dampers in the composite damping cable and different installation heights of the damping cable on the vibration control is analyzed. The results show that a small vortex excitation force will cause large vibrations of low-dampened towering structures, and the structure will undergo buffeting under the action of wind load pulse force. The damping cable can greatly reduce the amplitude of structural vibration. The root means square of structural vibration displacement varies with damping. The viscosity coefficient of the device and the installation height of the main cable of the damping cable are greatly reduced.


Author(s):  
Hee-Dong Chae ◽  
Seung-bok Choi ◽  
Jong-Seok Oh

This paper proposes a new bed stage for patients in ambulance vehicle in order to improve ride quality in term of vibration control. The vibration of patient compartment in ambulance can cause a secondary damage to a patient and a difficulty for a doctor to perform emergency care. The bed stage is to solve vertical, rolling, and pitching vibration in patient compartment of ambulance. Four MR (magneto-rheological) dampers are equipped for vibration isolation of the stage. Firstly, a mathematical model of stage is derived followed by the measurement of vibration level of patient compartment of real ambulance vehicle. Then, the design parameters of bed stage is undertaken via computer simulation. Skyhook, PID and LQR controllers are used for vibration control and their control performances are compared.


2012 ◽  
Vol 446-449 ◽  
pp. 3889-3893
Author(s):  
Bin Zhao ◽  
Juan He ◽  
Hui Gao ◽  
Xu Gang Chen

For many high-rising buildings, large local space is very useful for its special function needs, such as conference hall and hotel lobby. The shake table test results of a high-rising building with large local space show that the dynamic characteristics of such structure are complex and the torsional mode becomes the first mode, while the torsional responses under earthquake excitation, especially of the floor just above the large local space, are very remarkable. In this paper, the bidirectional Tuned Mass Damper (TMD) is employed for reducing the torsional vibration of such complex high-rise building structure. A reduced-scale model is design and constructed. A series of shake table tests are carried out and the test results indicate that the TMD system is very effective in torsional vibration control of structural system.


Sign in / Sign up

Export Citation Format

Share Document