On-line calibration of phase-shifter in phase-shifting interferometer

2006 ◽  
Author(s):  
Lei Chen ◽  
Yingchun Li ◽  
Fei Liu
Keyword(s):  
2002 ◽  
Vol 720 ◽  
Author(s):  
J. B. L. Rao ◽  
D. P. Patel ◽  
P. K. Park ◽  
T. K. Dougherty ◽  
J. A. Zelik ◽  
...  

AbstractA novel, low-cost, phased-array antenna that uniquely incorporates bulk phase shifting using voltage-tunable dielectric (VTD) material is presented. The array does not contain an individual phase shifter at each radiating element. This paper presents the antenna concept and describes how it can be used as a low-cost phased array. The VTDs that are used in this antenna are described. The measured antenna patterns of a prototype phased array demonstrating electronic beam scanning at 10 GHz are also presented.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Nasser A ALQuaiti ◽  
Noor Asniza Murad

This paper discussed the design and performances of a liquid crystal phase shifter that can be used in tuning devices. Tuning devices growth with the demand in the emerging in telecommunication system. Tuning devices with smooth continuous phase shifting at low cost and compact size would be an advantage. This paper proposed a phase shifter using 5CB liquid crystal material. The advantages of using the material is the smoothness and continuity of the transitions in the phase shift. It is done by having a structure with cavity filled with the liquid crystal and applied with certain voltage that can be changed. The changes in voltage would change the applied electric field, and thus would change the permittivity of the material. The changes would affect the wave propagation and thus contribute to the phase shifting. The performance of the phase shifter was tested by means of simulation using CST Suite 2014 software. The results show that the higher the frequency, the higher the phase shift would occur. The highest FoM achieved is 68 (deg/dB) at 8 GHz. A phase shifter with smooth and continuous phase shift can be used as the feeding network in an array scanning antennas systems.


2005 ◽  
Vol 7 (11) ◽  
pp. 617-623 ◽  
Author(s):  
Rongwei Xu ◽  
Hongzhan Liu ◽  
Zhu Luan ◽  
Liren Liu

1985 ◽  
Vol PAS-104 (7) ◽  
pp. 1656-1662 ◽  
Author(s):  
N. Srinivasan ◽  
K.s. Rao ◽  
C.S. Indulkar ◽  
S.S. Venkata
Keyword(s):  

2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Tahseen Jwad ◽  
Sunan Deng ◽  
Haider Butt ◽  
Stefan Dimov

Fresnel zone plates (FZPs) have been gaining a significant attention by industry due to their compact design and light weight. Different fabrication methods have been reported and used for their manufacture but they are relatively expensive. This research proposes a new low-cost one-step fabrication method that utilizes nanosecond laser selective oxidation of titanium coatings on glass substrates and thus to form titanium dioxide (TiO2) nanoscale films with different thicknesses by controlling the laser fluence and the scanning speed. In this way, phase-shifting FZPs were manufactured, where the TiO2 thin-films acted as a phase shifter for the reflected light, while the gain in phase depended on the film thickness. A model was created to analyze the performance of such FZPs based on the scalar theory. Finally, phase-shifting FZPs were fabricated for different operating wavelengths by varying the film thickness and a measurement setup was built to compare experimental and theoretical results. A good agreement between these results was achieved, and an FZP efficiency of 5.5% to 20.9% was obtained when varying the wavelength and the oxide thicknesses of the zones.


Sign in / Sign up

Export Citation Format

Share Document