scholarly journals Gamma-radiation-induced photodarkening in actively pumped Yb3+-doped optical fiber and investigation of post-irradiation transmittance recovery

Author(s):  
B. P. Fox ◽  
K. Simmons-Potter ◽  
S. W. Moore ◽  
J. H. Fisher ◽  
D. C. Meister
2021 ◽  
Vol 253 ◽  
pp. 06003
Author(s):  
Ivan Chapalo ◽  
Andrei Gusarov ◽  
Damien Kinet ◽  
Karima Chah ◽  
Ying-Gang Nan ◽  
...  

We investigated post-irradiation variations of the radiation induced attenuation (RIA) of polymer perfluorinated (CYTOP) optical fiber exposed to gamma radiation. The RIA measured five months after the irradiation was qualitatively similar to that measured several hours after irradiation. However, quantitatively the RIA post-irradiation evolution significantly depends on the spectral range: in the visible range, the transmission partly recovers, while in the infrared, at wavelengths above 1300 nm the RIA grows and then saturates becoming permanent. The latter feature is prospective for gamma radiation dosimetry as a permanent long-term indicator of received radiation dose.


Author(s):  
Alejandro Ramos-Ballesteros ◽  
Ruchi Gakhar ◽  
Gregory P. Horne ◽  
Kazuhiro Iwamatsu ◽  
James F. Wishart ◽  
...  

Room temperature post-irradiation measurements of diffuse reflectance and EPR spectroscopies were made to characterize the long-lived radiation-induced species formed upon gamma irradiation (up to 100 kGy) of solid KCl, MgCl2, and ZnCl2 salts.


2007 ◽  
Vol 54 (5) ◽  
pp. 1812-1815
Author(s):  
N. Akchurin ◽  
M. Kh. Ashurov ◽  
M. I. Baydjanov ◽  
E. M. Gasanov ◽  
N. Ivanov ◽  
...  

1994 ◽  
Vol 20 (16) ◽  
pp. 2493-2508 ◽  
Author(s):  
E. Ciranni Signoretti ◽  
L. Valvo ◽  
P. Fattibene ◽  
S. Onori ◽  
M. Pantaloni

Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 323-334
Author(s):  
S B Preuss ◽  
A B Britt

Abstract Although it is well established that plant seeds treated with high doses of gamma radiation arrest development as seedlings, the cause of this arrest is unknown. The uvh1 mutant of Arabidopsis is defective in a homolog of the human repair endonuclease XPF, and uvh1 mutants are sensitive to both the toxic effects of UV and the cytostatic effects of gamma radiation. Here we find that gamma irradiation of uvh1 plants specifically triggers a G2-phase cell cycle arrest. Mutants, termed suppressor of gamma (sog), that suppress this radiation-induced arrest and proceed through the cell cycle unimpeded were recovered in the uvh1 background; the resulting irradiated plants are genetically unstable. The sog mutations fall into two complementation groups. They are second-site suppressors of the uvh1 mutant's sensitivity to gamma radiation but do not affect the susceptibility of the plant to UV radiation. In addition to rendering the plants resistant to the growth inhibitory effects of gamma radiation, the sog1 mutation affects the proper development of the pollen tetrad, suggesting that SOG1 might also play a role in the regulation of cell cycle progression during meiosis.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2573
Author(s):  
Yi-Hsiu Chung ◽  
Cheng-Kun Tsai ◽  
Ching-Fang Yu ◽  
Wan-Ling Wang ◽  
Chung-Lin Yang ◽  
...  

Purpose: By taking advantage of 18F-FDG PET imaging and tissue nuclear magnetic resonance (NMR) metabolomics, we examined the dynamic metabolic alterations induced by liver irradiation in a mouse model for hepatocellular carcinoma (HCC). Methods: After orthotopic implantation with the mouse liver cancer BNL cells in the right hepatic lobe, animals were divided into two experimental groups. The first received irradiation (RT) at 15 Gy, while the second (no-RT) did not. Intergroup comparisons over time were performed, in terms of 18F-FDG PET findings, NMR metabolomics results, and the expression of genes involved in inflammation and glucose metabolism. Results: As of day one post-irradiation, mice in the RT group showed an increased 18F-FDG uptake in the right liver parenchyma compared with the no-RT group. However, the difference reached statistical significance only on the third post-irradiation day. NMR metabolomics revealed that glucose concentrations peaked on day one post-irradiation both, in the right and left lobes—the latter reflecting a bystander effect. Increased pyruvate and glutamate levels were also evident in the right liver on the third post-irradiation day. The expression levels of the glucose-6-phosphatase (G6PC) and fructose-1, 6-bisphosphatase 1 (FBP1) genes were down-regulated on the first and third post-irradiation days, respectively. Therefore, liver irradiation was associated with a metabolic shift from an impaired gluconeogenesis to an enhanced glycolysis from the first to the third post-irradiation day. Conclusion: Radiation-induced metabolic alterations in the liver parenchyma occur as early as the first post-irradiation day and show dynamic changes over time.


1994 ◽  
Vol 33 (Part 2, No. 2B) ◽  
pp. L233-L234 ◽  
Author(s):  
Yoshinori Hayashi ◽  
Yuki Okuda ◽  
Hisamitsu Mitera ◽  
Keizo Kato

1998 ◽  
Vol 238 (1-2) ◽  
pp. 43-51 ◽  
Author(s):  
E. M. Abdel-Bary ◽  
A. M. Dessouki ◽  
E. M. El-Nesr ◽  
M. M. Hassan

2012 ◽  
Vol 482-484 ◽  
pp. 1585-1591 ◽  
Author(s):  
Cheng Fu Yang ◽  
Wei Wen Wang ◽  
Hsin Hwa Chen ◽  
Wei Tan Sun ◽  
Chi Lin Shiau ◽  
...  

In this paper, we report a new phenomenon observed in the gamma-ray radiation-induced hydrophobic effects on an Invar surface: When the Invar alloy is subjected to different doses of gamma-ray irradiation, the contact angle increases with the radiation dose. Invar samples with exposed to a higher dose appear more hydrophobic, but this tendency disappears following post-irradiation etching. The contact angles of the irradiated and etched Invar samples can be restored back to a stable value with small deviation after 30 min of annealing at 150°C. X-ray diffraction (XRD) analysis found no crystalline structural changes. High resolution field emission scanning microscope (FE-SEM) analyses showed that irradiation might induce crack-like surfaces which could be removed at higher radiation dose in the following acid etchings. It is believed that the chemical bonds of Invar oxide on the surface were broken by the gamma-ray irradiation, thus raising the likelihood of binding with free ions in the air and resulting in the exclusion of the hydrophilic OH bonds, leaving a hydrophobic post-irradiation Invar surface.


Sign in / Sign up

Export Citation Format

Share Document