Dynamic threshholds for land surface change detection using image differencing

Author(s):  
Sang-il Kim ◽  
Kyung-Soo Han ◽  
In-Hwan Kim ◽  
Jong-Min Yeom ◽  
Kyoung-Jin Pi
2001 ◽  
Vol 22 (13) ◽  
pp. 2463-2477 ◽  
Author(s):  
Jian Guo Liu ◽  
A. Black ◽  
H. Lee ◽  
H. Hanaizumi ◽  
J. McM. Moore

2021 ◽  
Author(s):  
Miluska Anthuannet Rosas ◽  
François Clapuyt ◽  
Willem Viveen ◽  
Veerle Vanacker

2021 ◽  
Author(s):  
Daniel Sheward ◽  
Anthony Cook ◽  
Chrysa Avdellidou ◽  
Marco Delbo ◽  
Bruno Cantarella ◽  
...  

2012 ◽  
Vol 23 (2) ◽  
pp. 139-172
Author(s):  
Abdullah Salman Alsalman Abdullah Salman Alsalman

Noting that Khartoum represents the most rapidly expanding city in the Sudan and taking into account that change detection operations are seldom , the present study has been initiated to attempt to produce work that synthesizes land use/land cover (LULC) to investigate change detection using GIS, remote sensing data and digital image processing techniques; estimate, evaluate and map changes that took place in the city from 1975 to 2003. The experiment used the techniques of visual inspection, write-function-memoryinsertion, image differencing, image transformation i.e. normalized difference vegetation index (NDVI), tasseled cap, principal component analysis (PCA), post-classification comparison and GIS. The results of all these various techniques were used by the authors to study change detection of the geographic locale of the test area. Image processing and GIS techniques were performed using Intergraph Image analyst 8.4 and GeoMedia professional version 6, ERDAS Imagine 8.7, and ArcGIS 9.2. Results obtained were discussed and analyzed in a comparative manner and a conclusion regarding the best method for change detection of the test area was derived.


2020 ◽  
Vol 12 (4) ◽  
pp. 699 ◽  
Author(s):  
Qiang Zhou ◽  
Heather Tollerud ◽  
Christopher Barber ◽  
Kelcy Smith ◽  
Daniel Zelenak

The U.S. Geological Survey’s Land Change Monitoring, Assessment, and Projection (LCMAP) initiative involves detecting changes in land cover, use, and condition with the goal of producing land change information to improve the understanding of the Earth system and provide insights on the impacts of land surface change on society. The change detection method ingests all available high-quality data from the Landsat archive in a time series approach to identify the timing and location of land surface change. Annual thematic land cover maps are then produced by classifying time series models. In this paper, we describe the optimization of the classification method used to derive the thematic land cover product. We investigated the influences of auxiliary data, sample size, and training from different sources such as the U.S. Geological Survey’s Land Cover Trends project and National Land Cover Database (NLCD 2001 and NLCD 2011). The results were evaluated and validated based on independent data from the training dataset. We found that refining the auxiliary data effectively reduced artifacts in the thematic land cover map that are related to data availability. We improved the classification accuracy and stability considerably by using a total of 20 million training pixels with a minimum of 600,000 and a maximum of 8 million training pixels per class within geographic windows consisting of nine Analysis Ready Data tiles (450 by 450 km2). Comparisons revealed that the NLCD 2001 training data delivered the best classification accuracy. Compared to the original LCMAP classification strategy used for early evaluation (e.g., Trends training data, 20,000 samples), the optimized classification strategy improved the annual land cover map accuracy by an average of 10%.


Sign in / Sign up

Export Citation Format

Share Document