Fast atmospheric correction algorithm based on the darkest pixel approach for retrieving the aerosol optical thickness: comparison with in-situ AOT measurements

Author(s):  
Kyriacos Themistocleous ◽  
Diofantos G. Hadjimitsis ◽  
Dimitrios Alexakis
Author(s):  
Sisir Kumar Dash ◽  
Tasuku Tanaka ◽  
Hiroyuki Hachiya ◽  
Yashuhiro Sugimori

Multi Angle Imaging Spectro Radiometer (MISR) has a capability to observe the ocean surface from different viewing directions. Attempts were made to estimate the ocean surface reflectance and chlorophyll-a concentration using MISR data. The aerosol optical thickness (OAT), available from the MISR archive is compared with the results simulated using the 6S radiation transfer code. It turns out that the AOT values agree with each other up to 85 percent in certain areas in case-1 waters. Substituting the archive values of AOT into the radiative transfer process, we obtain the surface reflectance. This surface reflectance, in turn, is employed together with the in-water algorithm, to obtain the clhorophyll concentration maps for three viewing directions (aft, nadir and forward). The pattern of obtained chlorophyll map is reasonable. It is estimated that an error of about 35 percent is involved in the radiance calibration and AOT , Hence, with best possibility, the surface reflectance is quantified and the chlorophyll maps were generated. When it is compared with the nadir observation, the forward viewing camera overestimates and the aft viewing camera underestimates the chlorophyll-a concentrartion especially in case-1 waters. In case 2 waters, the chlorophyll-a concentration shows similiar patterns for the three different viewing directions. Due to lack of in-situ data, absolute chlorophyll values were ignored but errors were quatified for the surface reflectance and the aerosol optical thickness with the 6S simulated results. Keywords: MISR, 6S, AOT, Surface reflectance, Chlorophyll-a


2021 ◽  
Vol 13 (4) ◽  
pp. 654
Author(s):  
Erwin Wolters ◽  
Carolien Toté ◽  
Sindy Sterckx ◽  
Stefan Adriaensen ◽  
Claire Henocq ◽  
...  

To validate the iCOR atmospheric correction algorithm applied to the Sentinel-3 Ocean and Land Color Instrument (OLCI), Top-of-Atmosphere (TOA) observations over land, globally retrieved Aerosol Optical Thickness (AOT), Top-of-Canopy (TOC) reflectance, and Vegetation Indices (VIs) were intercompared with (i) AERONET AOT and AERONET-based TOC reflectance simulations, (ii) RadCalNet surface reflectance observations, and (iii) SYN Level 2 (L2) AOT, TOC reflectance, and VIs. The results reveal that, overall, iCOR’s statistical and temporal consistency is high. iCOR AOT retrievals overestimate relative to AERONET, but less than SYN L2. iCOR and SYN L2 TOC reflectances exhibit a negative bias of ~−0.01 and −0.02, respectively, in the Blue bands compared to the simulations. This diminishes for RED and NIR, except for a +0.02 bias for SYN L2 in the NIR. The intercomparison with RadCalNet shows relative differences < ±6%, except for bands Oa02 (Blue) and Oa21 (NIR), which is likely related to the reported OLCI “excess of brightness”. The intercomparison between iCOR and SYN L2 showed R2 = 0.80–0.93 and R2 = 0.92–0.96 for TOC reflectance and VIs, respectively. iCOR’s higher temporal smoothness compared to SYN L2 does not propagate into a significantly higher smoothness for TOC reflectance and VIs. Altogether, we conclude that iCOR is well suitable to retrieve statistically and temporally consistent AOT, TOC reflectance, and VIs over land surfaces from Sentinel-3/OLCI observations.


2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2011 ◽  
Vol 68 (4) ◽  
pp. 745-750 ◽  
Author(s):  
Harilal B. Menon ◽  
Nutan Sangekar ◽  
Aneesh Lotliker ◽  
Krishnaswamy Krishna Moorthy ◽  
Ponnumani Vethamony

Abstract Menon, H. B., Sangekar, N., Lotliker, A., Krishna Moorthy, K., and Vethamony, P. 2011. Aerosol optical thickness and spatial variability along coastal and offshore waters of the eastern Arabian Sea. – ICES Journal of Marine Science, 68: 745–750. Data from the ocean-colour monitor (OCM) on board the Indian Remote Sensing Satellite P4 were used to analyse the spatial and temporal distribution of aerosol optical thickness (AOT) over the coastal and offshore waters of the eastern Arabian Sea. Zero water-leaving radiance from the near infrared (NIR) region was assumed for oceanic (open ocean) waters, because of the absorption of long-wave radiation by water molecules. As this assumption fails in coastal waters, it was necessary to correct for water-leaving radiance and sun glint to the NIR bands. The aerosol size-distribution parameter (α) was derived from a relationship between two NIR bands. The Ångström turbidity parameter (β) was obtained using an algorithm relating in situ hand-held, sun-photometer measurements and aerosol radiance (La) at 490 nm. The relationship between β and La (490) was derived with a sensitivity analysis, using a calibrated radiative transfer model. AOTs were retrieved for each pixel of 500 nm. The algorithm's performance was tested by comparing OCM-derived AOT values with in situ AOT and MODIS-derived values. Aerosol maps thus generated from January to December 2005 demonstrate the potential of this new retrieval method for producing AOT climatology from OCM data over coastal waters.


2000 ◽  
Vol 27 (11) ◽  
pp. 1643-1646 ◽  
Author(s):  
A. Smirnov ◽  
B. N. Holben ◽  
D. Savoie ◽  
J. M. Prospero ◽  
Y. J. Kaufman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document