Advanced Technologies And State-Of-The-Art For High Bandwidth CO 2 Heterodyne Detection

Author(s):  
S. Prutzer ◽  
J. F. Shanley ◽  
C. B. Chinnock ◽  
S. L. Witman
2021 ◽  
pp. 095605992110640
Author(s):  
Hemant Arora ◽  
Rutvik Dangarwala ◽  
Sudipto Mukherjee ◽  
Bhavdeep Singh Munjal

Space exploration arises the demand for launching large size structures to satisfy the need of high bandwidth telecommunication, earth observation and deep space interplanetary missions. Launching of these monolithic structures of sizes 3 m or more are not feasible due to limited launch fairing space of state-of-the-art launch vehicles. Therefore, the development of innovative deployment mechanisms is need of the hour. Deployment process of space borne deployable systems is the process of transition from mechanism to structure which is one of the unreliable stage due to existence of many conventional rotary joints which causes loss of energy due to backlash, friction and misalignment. An investigation study is presented in this paper for churning out a solution of flexible hinges using tape springs in state-of-the-art space deployable configurations which eliminates the factors causing loss of energy. Analytical and experimental methods are evaluated for investigating the bending behaviour of tape flexures. Tape flexures demonstrate to be a suitable candidate for compliant deployable configuration. The proposed configuration with combination of two tape flexures mounted in such a way that concave curve of each tape faces each other are structurally analysed for desired rotation angle. A comparison study is carried out for various material options of single and double layered tape flexures proposed for a flexure hinge. Practical feasibility of the proposed configuration is also demonstrated successfully on space borne deployable structures.


2003 ◽  
Vol 43 (1) ◽  
pp. 587 ◽  
Author(s):  
K.W. Wong ◽  
P.M. Wong ◽  
T.D. Gedeon ◽  
C.C. Fung

The application of new mathematics using fuzzy logic has been successful in several areas of petroleum engineering. This paper reviews the state-of-the-art of fuzzy logic applied to reservoir evaluation, especially in the area of petrophysical properties prediction and lithofacies prediction from well logs. In this paper, we will also review some fuzzy methods that have been successfully applied to case studies. Besides using fuzzy logic in establishing the model itself, fuzzy logic is also used in some cases as pre-processing or post-processing tools. This paper will act as a guide for petroleum engineers to take advantage of these advanced technologies as well as those undertaking research in this field.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1507
Author(s):  
Shahin Homaeigohar

The studies introduced in this special issue aim to provide a state-of-the-art vision for nanomaterials-based technology that could profit the water treatment industry. Given the expanding crisis of water shortages across the world, this perspective is invaluable and of paramount importance. No doubt, as the environmental challenges are going to be more complicated and to extend to as-yet unconsidered areas, we need to upgrade our facilities and knowledge to address them properly. Nanomaterials are indeed promising building blocks for such advanced technologies that enable them to purify water streams from complex pollutants in an energy, cost and time-effective manner. The focus of the (review and original research) articles collected in this issue is on various kinds of nanomaterials made of carbon, polymer, metal, and metal oxides (magnetic and photocatalyst), that are employed for adsorption and photodegradation of heavy metals and organic pollutants, respectively. Here, I briefly review the insights given in these precious studies and suggest new directions for future research in this field.


2021 ◽  
Vol 10 (1) ◽  
pp. 45-52
Author(s):  
S. Neelambike ◽  
C. Amith Shekhar ◽  
B. H. Rekha ◽  
Bhavana S. Patil

Being ad-hoc in design, VA NET is a form of networks generated by the idea of building up a network of cars for a specific needs or circumstance. In addition to the benefits, VANET poses a large number of challenges such as providing QoS, high bandwidth and connectivity, and vehicle and individual privacy security. Each report discusses VANET 's state-of-the-art, explaining the relevant problems. We address in depth network design, signal modelling and propagation mechanisms m, usability modeling, routing protocols and network security. The paper's key results are that an effective and stable VANET satisfies all architecture criteria such as QoS, minimal latency, low BER and high PDR. At the end of the paper are addressed several primary work areas and challenges at VANET.


2020 ◽  
Vol 11 (1) ◽  
pp. 1-10
Author(s):  
Inderpreet Kaur Preet ◽  
Kamaljit Singh Saini

The advent of state of the art advanced technologies is necessitated by the ever-increasing onset and infiltration of our lives by the smart devices and gadgets for providing an array of services. The conventional methods and techniques already becoming obsolete and the consistent and persistent demand for provision of high end services with a greater degree of accuracy by various sectors, paves the way for collaboration of smart technologies such as Internet of things, Internet of everything, Internet of Vehicles etc. with the smart gadgets and devices. This systematic review tries to explore the avenues for research and multiple streaming of segments by the analysis of allied smart systems comprising of smart devices and multi-dimensional IoT, IoE, IoV etc. 


1993 ◽  
Author(s):  
Philip A. Perry ◽  
James A. Van Laar ◽  
George Touchton ◽  
Stanley E. Pace

The Electric Power Research Institute (EPRI) has been conducting a broad research and development effort over the last ten years to provide better designs and materials for fossil fuel power plants. To facilitate transferring this advanced design and technology knowledge to the power industry for the next generation of power plants, EPRI and Sargent & Lundy (S&L) are creating the State-of-the-Art Power Plant (SOAPP) Workstation. The SOAPP Workstation will be available to the industry as a powerful tool that can be used to screen advanced technologies for appropriateness to specific sites; obtain design guidelines for advanced technologies; and generate site-specific conceptual designs, including conceptual design drawings, heat balances, cost estimates, and schedules. The technology transfer components of this project are a series of individual software modules that will be integrated into the SOAPP Workstation. This paper discusses two software modules that have recently been developed for combustion turbine power plant emission control. The Combustion Turbine Nitrogen Oxides (NOx) Combustor Control Strategies technology module presents state-of-the-art technologies that are commercially available to reduce NOx emissions during combustion, including water injection, steam injection, and dry low NOx combustors. The second technology module, Combustion Turbine Postcombustion NOx/CO Control Strategies, examines selective catalytic reduction (SCR) and carbon monoxide (CO) oxidation technologies for reducing postcombustion NOx and CO emissions. These two technology modules, operating within the SOAPP Workstation, will allow appropriate decisions to be made concerning combustion turbine emission control.


Author(s):  
Sanjay Garg ◽  
Klaus Schadow ◽  
Wolfgang Horn ◽  
Hugo Pfoertner ◽  
Ion Stiharu

This paper provides an overview of the controls and diagnostics technologies, that are seen as critical for more intelligent gas turbine engines (GTE), with an emphasis on the sensor and actuator technologies that need to be developed for the controls and diagnostics implementation. The objective of the paper is to help the “Customers” of advanced technologies, defense acquisition and aerospace research agencies, understand the state-of-the-art of intelligent GTE technologies, and help the “Researchers” and “Technology Developers” for GTE sensors and actuators identify what technologies need to be developed to enable the “Intelligent GTE” concepts and focus their research efforts on closing the technology gap. To keep the effort manageable, the focus of the paper is on “On-Board Intelligence” to enable safe and efficient operation of the engine over its life time, with an emphasis on gas path performance.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3242 ◽  
Author(s):  
Seungjun Lee ◽  
Seong Min Roh ◽  
Eunji Lee ◽  
Yejin Park ◽  
Byung Chul Lee ◽  
...  

Since separation of target biomolecules is a crucial step for highly sensitive and selective detection of biomolecules, hence, various technologies have been applied to separate biomolecules, such as deoxyribonucleic acid (DNA), protein, exosome, virus, etc. Among the various technologies, dielectrophoresis (DEP) has the significant advantage that the force can provide two different types of forces, attractive and repulsive DEP force, through simple adjustment in frequency or structure of microfluidic chips. Therefore, in this review, we focused on separation technologies based on DEP force and classified various separation technologies. First, the importance of biomolecules, general separation methods and various forces including DEP, electrophoresis (EP), electrothermal flow (ETF), electroosmosis (EO), magnetophoresis, acoustophoresis (ACP), hydrodynamic, etc., was described. Then, separating technologies applying only a single DEP force and dual force, moreover, applying other forces simultaneously with DEP force were categorized. In addition, advanced technologies applying more than two different kinds of forces, namely complex force, were introduced. Overall, we critically reviewed the state-of-the-art of converged various forces for detection of biomolecules with novelty of DEP.


Sign in / Sign up

Export Citation Format

Share Document