An Apparatus For Wide Range Feedback Control Of ND:YAG Laser Pulse Energy

1987 ◽  
Author(s):  
J. A. Penkethman
2013 ◽  
Vol 31 (10) ◽  
pp. 480-485
Author(s):  
Siavash Savadi Oskoee ◽  
Mahmoud Bahari ◽  
Soodabeh Kimyai ◽  
Sahand Rikhtegaran ◽  
Firooz Puralibaba ◽  
...  

2021 ◽  
Vol 27 (7) ◽  
pp. 1-12
Author(s):  
Malak Mohammed Fahad ◽  
Munaf S. Majeed ◽  
Emad Talib Hashim

One of the most important techniques for preparing nanoparticle material is Pulsed Laser Ablation in Liquid technique (PLAL). Carbon nanoparticles were prepared using PLAL, and the carbon target was immersed in Ultrapure water (UPW) then irradiated with Q-switched Nd:YAG laser (1064 nm) and six ns pulse duration. In this process, an Nd:YAG laser beam was focused near the carbon surface. Nanoparticles synthesized using laser irradiation were studied by observing the effects of varying incident laser pulse intensities (250, 500, 750, 1000) mJ on the particle size (20.52, 36.97, 48.72, and 61.53) nm, respectively. In addition, nanoparticles were characterized by means of the Atomic Force Microscopy (AFM) test, pH easurement, and an Electrical Conductivity (EC) test of the nano solution. The smallest particle size was produced with (250) mJ laser pulse energy.                                                                    


2019 ◽  
Vol 17 (42) ◽  
pp. 136-140 ◽  
Author(s):  
Mays Oday Hashim ◽  
Dr. Razi Al-Azawi ◽  
Dr. Abdul Hadi Kadhim

The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and the number of laser pulse irradiated per unit area. The relationship between laser pulse energy and the value of surface roughness is a proportionality due to the increase in ablation processes which are associated with LSP at sample surface caused by the increasing of laser pulse energy.


2012 ◽  
Vol 37 (15) ◽  
pp. 3231 ◽  
Author(s):  
Frederik Fuest ◽  
Michael J. Papageorge ◽  
Walter R. Lempert ◽  
Jeffrey A. Sutton

1983 ◽  
Author(s):  
Malcolm S. White ◽  
Raymond W. Wyatt ◽  
Anthony G. Brett

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1423 ◽  
Author(s):  
Dongkyoung Lee

An inspection process using a Spring Contact Probe (SCP) is an essential step in the semiconductor-manufacturing process. Many plungers, which are the main body of the SCP, are manufactured by a stamping process. After the stamping process, mechanical cutting is applied and the plunger body may be damaged. Thus, to improve cut quality and productivity while minimizing body damage, laser spot cutting can be used. To fully utilize this technology, it is necessary to investigate interaction characteristics of beryllium copper (BeCu) during laser spot cutting. Effects of a total irradiated laser-pulse energy (1 mJ ~1000 mJ ) and pulse duration (100 ns ~8 ns ) on the material-removal zone, thermal depth, and crater size are examined. The crater size can be affected by the localization of heating dominantly. An incubation model is applied to investigate the correlation between crater size and laser-pulse energy. Surface morphology characteristics such as edge separation, small particles, spatter motion, and soaring-up motion are observed.


2013 ◽  
Vol 815 ◽  
pp. 778-781
Author(s):  
Xiao Hong Wu

Used YAG pulse laser to weld 304 stainless steel nuts, studied about the parameters such as peak power, pulse width, defocus distance impacting on the performance of the joints welded by laser. The studies showed that the tensile strength and torque of the nuts increased as the peak power and the pulse width increased.Burn through in welding easy occur when laser pulse energy is too big, pulse width is too wide or defocus distance is too low.


Sign in / Sign up

Export Citation Format

Share Document