SU-FF-I-133: Assessing the Magnetic Resonance Imaging Performance of Gadolinium-Hyaluronic Acid Polymer Contrast Agents in Phosphate Buffered Saline

2009 ◽  
Vol 36 (6Part5) ◽  
pp. 2465-2466
Author(s):  
Nima Kasraie ◽  
G Clarke ◽  
H Oviatt
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zeyu Liang ◽  
Qiyue Wang ◽  
Hongwei Liao ◽  
Meng Zhao ◽  
Jiyoung Lee ◽  
...  

AbstractHistopathological level imaging in a non-invasive manner is important for clinical diagnosis, which has been a tremendous challenge for current imaging modalities. Recent development of ultra-high-field (UHF) magnetic resonance imaging (MRI) represents a large step toward this goal. Nevertheless, there is a lack of proper contrast agents that can provide superior imaging sensitivity at UHF for disease detection, because conventional contrast agents generally induce T2 decaying effects that are too strong and thus limit the imaging performance. Herein, by rationally engineering the size, spin alignment, and magnetic moment of the nanoparticles, we develop an UHF MRI-tailored ultra-sensitive antiferromagnetic nanoparticle probe (AFNP), which possesses exceptionally small magnetisation to minimize T2 decaying effect. Under the applied magnetic field of 9 T with mice dedicated hardware, the nanoprobe exhibits the ultralow r2/r1 value (~1.93), enabling the sensitive detection of microscopic primary tumours (<0.60 mm) and micrometastases (down to 0.20 mm) in mice. The sensitivity and accuracy of AFNP-enhanced UHF MRI are comparable to those of the histopathological examination, enabling the development of non-invasive visualization of previously undetectable biological entities critical to medical diagnosis and therapy.


2019 ◽  
Author(s):  
Hamilton Lee ◽  
Jenica Lumata ◽  
Michael A. Luzuriaga ◽  
Candace Benjamin ◽  
Olivia Brohlin ◽  
...  

<div><div><div><p>Many contrast agents for magnetic resonance imaging are based on gadolinium, however side effects limit their use in some patients. Organic radical contrast agents (ORCAs) are potential alternatives, but are reduced rapidly in physiological conditions and have low relaxivities as single molecule contrast agents. Herein, we use a supramolecular strategy where cucurbit[8]uril binds with nanomolar affinities to ORCAs and protects them against biological reductants to create a stable radical in vivo. We further over came the weak contrast by conjugating this complex on the surface of a self-assembled biomacromolecule derived from the tobacco mosaic virus.</p></div></div></div>


2021 ◽  
Vol 57 (14) ◽  
pp. 1770-1773
Author(s):  
S. A. Amali S. Subasinghe ◽  
Jonathan Romero ◽  
Cassandra L. Ward ◽  
Matthew D. Bailey ◽  
Donna R. Zehner ◽  
...  

The complexes described here serve as contrast agents for magnetic resonance imaging thermometry.


Author(s):  
Anton Popov ◽  
Maxim Artemovich Abakumov ◽  
Irina Savintseva ◽  
Artem Ermakov ◽  
Nelly Popova ◽  
...  

Gd-based complexes are widely used as magnetic resonance imaging (MRI) contrast agents. The safety of previously approved contrast agents is questionable and is being re-assessed. The main causes of concern...


2021 ◽  
pp. 2101019
Author(s):  
Sandra Díez‐Villares ◽  
Miguel A. Ramos‐Docampo ◽  
Andrés da Silva‐Candal ◽  
Pablo Hervella ◽  
Abi J. Vázquez‐Ríos ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1230
Author(s):  
Vega Lloveras ◽  
José Vidal-Gancedo

The search for new biomedical applications of dendrimers has promoted the synthesis of new radical-based molecules. Specifically, obtaining radical dendrimers has opened the door to their use in various fields such as magnetic resonance imaging, as anti-tumor or antioxidant agents, or the possibility of developing new types of devices based on the paramagnetic properties of organic radicals. Herein, we present a mini review of radical dendrimers based on polyphosphorhydrazone, a new type of macromolecule with which, thanks to their versatility, new metal-free contrast agents are being obtained, among other possible applications.


2021 ◽  
Vol 4 (2) ◽  
pp. 1235-1242
Author(s):  
Armita Dash ◽  
Barbara Blasiak ◽  
Boguslaw Tomanek ◽  
Abhinandan Banerjee ◽  
Simon Trudel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document