scholarly journals Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection?

2014 ◽  
Vol 41 (8Part1) ◽  
pp. 083301 ◽  
Author(s):  
Ana González-Suárez ◽  
Macarena Trujillo ◽  
Fernando Burdío ◽  
Anna Andaluz ◽  
Enrique Berjano
2018 ◽  
Vol 63 (23) ◽  
pp. 235026 ◽  
Author(s):  
Rendong Chen ◽  
Fang Lu ◽  
Fa Wu ◽  
Tian’an Jiang ◽  
Liting Xie ◽  
...  

Author(s):  
Jing Wang ◽  
Suzie Brown ◽  
Stephen W. Tullis

The aorta is the largest artery in humans, stemming from the left ventricle of the heart and stretching down to the abdomen. It is responsible for distributing oxygenated blood to the rest of the body during each cardiac cycle. The pulsatile blood flow is complex in nature and has been previously modeled computationally in an effort to understand its effect on cardiovascular diseases and medical device design interaction [4,8–9]. However, the majority of these models either treat the vessel wall as rigid or have significantly simplified geometries, which from a physiological perspective are not true of large vessels such as the aorta. Here, the complex mechanical interaction between pulsatile blood flow and wall dynamics in the aortic arch is investigated using geometry adopted directly from CT images.


2005 ◽  
Vol 6 (2) ◽  
pp. 65 ◽  
Author(s):  
Marc Gerdisch ◽  
Thomas Hinkamp ◽  
Stephen D. Ainsworth

<P>Background: Use of the interrupted coronary anastomosis has largely been abandoned in favor of the more rapid continuous suturing technique. The Coalescent U-CLIP anastomotic device allows the surgeon to create an interrupted distal anastomosis in the same amount of time that it would take to create a continuous anastomosis. This acute bovine study examined the effect of the anastomotic technique on blood flow and vessel wall function. </P><P>Methods: End-to-side coronary anastomoses were created in an open chest bovine model using the left and right internal thoracic arteries and the left anterior descending coronary artery. All other variables except suturing technique were carefully controlled. In each animal, one anastomosis was completed using a continuous suturing technique and the other was performed in an interrupted fashion using the Coalescent U-CLIP anastomotic device. Volumetric flow curves through each graft were analyzed using key indicators of anastomotic quality, and anastomotic compliance was evaluated using intravascular ultrasound. Luminal castings were created of each vessel to examine the interior surface of each anastomosis for constrictions and deformities. </P><P>Results: The interrupted anastomoses created with the Coalescent U-CLIP anastomotic device showed significant differences with respect to anastomotic compliance, pulsatility index, peak flow, and percentage of diastolic flow. The cross-sectional area and degree of luminal deformity were also different for the two suturing techniques. </P><P>Conclusions: In this acute bovine model, interrupted coronary anastomoses demonstrated superior geometric consistency and greater physiologic compliance than did continuously sutured anastomoses. The interrupted anastomosis also caused fewer disturbances to the flow waveform, behaving similarly to a normal vessel wall. The combination of these effects may influence both acute and long-term patency of the coronary bypass grafts.</P>


2021 ◽  
pp. 1-1
Author(s):  
E. De Vita ◽  
F. De Tommasi ◽  
C. Massaroni ◽  
A. Iadicicco ◽  
E. Faiella ◽  
...  

Author(s):  
Scott C. Corbett ◽  
Amin Ajdari ◽  
Ahmet U. Coskun ◽  
Hamid N.-Hashemi

Thrombosis and hemolysis are two problems encountered when processing blood in artificial organs. Physical factors of blood flow alone can influence the interaction of proteins and cells with the vessel wall, induce platelet aggregation and influence coagulation factors responsible for the formation of thrombus, even in the absence of chemical factors in the blood. These physical factors are related to the magnitude of the shear rate/stress, the duration of the applied force and the local geometry. Specifically, high blood shear rates (or stress) lead to damage (hemolysis, platelet activation), while low shear rates lead to stagnation and thrombosis [1].


Sign in / Sign up

Export Citation Format

Share Document