Kaluza–Klein unified field theory and apparent four‐dimensional space‐time

1985 ◽  
Vol 53 (9) ◽  
pp. 863-872 ◽  
Author(s):  
Christopher F. Chyba
2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The presented "New Unification Theory" unifies Classical Electrodynamics with General Relativity and Quantum Physics


2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The presented "New Unification Theory" unifies Classical Electrodynamics with General Relativity and Quantum Physics


2018 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Lorentz and Minkowski published in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10^-35 [m]


2019 ◽  
Author(s):  
Wim Vegt

The Light we see in our daily world has the Power to open Doors that have never been openened before.Albert Einstein, Lorentz and Minkowski published together in 1905 the Theory of Special Relativity and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheelers 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.The original Kaluza-Klein theory was one of the first attempts to create an unified field theory i.e. the theory, which would unify all the forces under one fundamental law. It was published in 1921 by Theodor Kaluza and extended in 1926 by Oskar Klein. The basic idea of this theory was to postulate one extra compactified space dimension and introduce nothing but pure gravity in a new (1 + 4)-dimensional space-time. Klein suggested that the fifth dimension would be rolled up into a tiny, compact loop on the order of 10-35 [m]The "New Theory" represents the "4-dimensional Unification of De Broglie Waves and Electromagnetic Waves". The "New Theory" demonstrates that the propagation of light is fully consistent with Newton's famous 3 laws of motion. That the speed of light is fully controlled by a prefect equilibrium between the inertia of the electromagnetic radiation energy (electromagnetic mass) and the electromagnetic "Radiation Pressure" at the front of the "Beam of Light". That, in the application of a laser beam, the outward oriented radiation pressure at the sides of the laser beam has been fully compensated by the inward oriented forces of electromagnetic interaction according Newton’s third law "Action = Reaction".


2009 ◽  
Vol 18 (04) ◽  
pp. 599-611 ◽  
Author(s):  
ALFRED MOLINA ◽  
NARESH DADHICH

By considering the product of the usual four-dimensional space–time with two dimensional space of constant curvature, an interesting black hole solution has recently been found for Einstein–Gauss–Bonnet gravity. It turns out that this as well as all others could easily be made to radiate Vaidya null dust. However, there exists no Kerr analog in this setting. To get the physical feel of the four-dimensional black hole space–times, we study asymptotic behavior of stresses at the two ends, r → 0 and r → ∞.


2006 ◽  
Vol 21 (28n29) ◽  
pp. 5905-5956 ◽  
Author(s):  
MATEJ PAVŠIČ

A theory in which four-dimensional space–time is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza–Klein. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U (1) × SU (2) × SU (3) of the standard model. The generalized spin connection in C-space has the properties of Yang–Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb–Ramond fields.


2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


2019 ◽  
Author(s):  
Wim Vegt

Albert Einstein, Hendrik Lorentz and Hermann Minkowski published in 1905 the “Theory of Special Relativity” and Einstein published in 1915 his field theory of general relativity based on a curved 4-dimensional space-time continuum to integrate the gravitational field and the electromagnetic field in one unified field. Since then the method of Einstein’s unifying field theory has been developed by many others in more than 4 dimensions resulting finally in the well-known 10-dimensional and 11-dimensional “string theory”. String theory is an outgrowth of S-matrix theory, a research program begun by Werner Heisenberg in 1943 (following John Archibald Wheeler‘s(3) 1937 introduction of the S-matrix), picked up and advocated by many prominent theorists starting in the late 1950’s.Theodor Franz Eduard Kaluza (1885-1954), was a German mathematician and physicist well-known for the Kaluza–Klein theory involving field equations in curved five-dimensional space. His idea that fundamental forces can be unified by introducing additional dimensions re-emerged much later in the “String Theory”.In classical unified field theory, the electromagnetic and gravitational interactions are defined by the field equations e.g. Till now the continuing of the method of Einstein’s unifying field theory in a 4-dimensional curved space-time continuum in curved multi-dimensional hyperspaces has not resulted in a successful Grand Unified Field Theory which explains the discrete values for electric charge, magnetic spin and the mass of all known elementary particles. The fundamental question is: Is a hyperspace curved multi-dimensional approach like the the 11-dimensional Superstring theory the only way to combine fundamentally different fields into one Grand Unifying Theory. Or is there a different way?In this new theory a fundamentally different path has been chosen. In the basic theory of the “Lorentz-Einstein-Minkovski” transformations (1905) two fundamentally different fields, the electric field and the magnetic field have been integrated into one 4-dimensional theory expressed by the electromagnetic potential 4-vector . Instead of defining the electric field and the magnetic field separately in a curved 6- or 7-dimensional hyperspace, both fields are integrated by the common fundamental effect of the force density . The electric field and the magnetic field are fundamentally different but have “the same origin” and “the same effect” of a force density acting on an arbitrary electromagnetic field configuration (particle or field). Instead of focusing on the differences in the separate fields and putting the differences in the separate fields in separate dimensions, this theory focusses on that what is in common. The “Origin” and the “Effect”. There is only one Origin for all the different fields (gravitational field, electromagnetic field etc.). There is only one single common effect, the force density acting on a field configuration (elementary particle or field). This theory focusses on that what is in common. The resulting force densities which have to equal zero at any time at any place in any direction to realize a Universe in Harmony and Equilibrium integrating in this way the very different fields in a Unified 4-dimensional Space-Time continuum.In this new fundamentally different approach the different interactions (gravity, electromagnetic interaction etc.) has not been interpreted as a curvature of a hyperspace in a 5-, 10- or 11 dimensional space (string theory) . The new theory has been based on the single concept of “Fundamental Harmony within the Universe”. A Unified Field Theory which results in the confinements of electromagnetic radiation (light) within dimensions smaller than 10-85 [m], carrying discrete values (positive or negative) for electric charge in monopole, di-pole or multipole configurations, carrying discrete values (positive or negative) for magnetic string in monopole, di-pole or multipole configurations and carrying (electromagnetic) mass with the property of inertia according Newton’s second law of motion.The Unified Field Theory has been based on the fundamental question for the existence of light (electromagnetic radiation). What are the fundamental boundaries which are required for a stable electromagnetic field configuration in which light can exist? There is only one boundary condition. “The electromagnetic field has to be in a perfect equilibrium (balance) with itself and its surrounding.” And when an electromagnetic field interacts with a gravitational field, weak interaction or strong interaction exactly the same boundary condition is required. That is the single and only requirement.


2001 ◽  
Vol 16 (10) ◽  
pp. 663-671
Author(s):  
TRISTAN HÜBSCH

The Hilbert spaces of supersymmetric systems admit symmetries which are often related to the topology and geometry of the (target) field-space. Here, we study certain (2, 2)-supersymmetric systems in two-dimensional space–time which are closely related to superstring models. They all turn out to possess some hitherto unexploited and geometrically and topologically unobstructed symmetries, providing new tools for studying the topology and geometry of superstring target space–times, and so the dynamics of the effective field theory in these.


Sign in / Sign up

Export Citation Format

Share Document