Colors on soap films–An interference phenomenon

1990 ◽  
Vol 28 (7) ◽  
pp. 479-481 ◽  
Author(s):  
Göran Rämme
Author(s):  
Vinayak P. Dravid ◽  
V. Ravikumar ◽  
Richard Plass

With the advent of coherent electron sources with cold field emission guns (cFEGs), it has become possible to utilize the coherent interference phenomenon and perform “practical” electron holography. Historically, holography was envisioned to extent the resolution limit by compensating coherent aberrations. Indeed such work has been done with reasonable success in a few laboratories around the world. However, it is the ability of electron holography to map electrical and magnetic fields which has caught considerable attention of materials science community.There has been considerable theoretical work on formation of space charge on surfaces and internal interfaces. In particular, formation and nature of space charge have important implications for the performance of numerous electroceramics which derive their useful properties from electrically active grain boundaries. Bonnell and coworkers, in their elegant STM experiments provided the direct evidence for GB space charge and its sign, while Chiang et al. used the indirect but powerful technique of x-ray microchemical profiling across GBs to infer the nature of space charge.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2678
Author(s):  
Sergey A. Lobov ◽  
Alexey I. Zharinov ◽  
Valeri A. Makarov ◽  
Victor B. Kazantsev

Cognitive maps and spatial memory are fundamental paradigms of brain functioning. Here, we present a spiking neural network (SNN) capable of generating an internal representation of the external environment and implementing spatial memory. The SNN initially has a non-specific architecture, which is then shaped by Hebbian-type synaptic plasticity. The network receives stimuli at specific loci, while the memory retrieval operates as a functional SNN response in the form of population bursts. The SNN function is explored through its embodiment in a robot moving in an arena with safe and dangerous zones. We propose a measure of the global network memory using the synaptic vector field approach to validate results and calculate information characteristics, including learning curves. We show that after training, the SNN can effectively control the robot’s cognitive behavior, allowing it to avoid dangerous regions in the arena. However, the learning is not perfect. The robot eventually visits dangerous areas. Such behavior, also observed in animals, enables relearning in time-evolving environments. If a dangerous zone moves into another place, the SNN remaps positive and negative areas, allowing escaping the catastrophic interference phenomenon known for some AI architectures. Thus, the robot adapts to changing world.


2006 ◽  
Vol 18 (9) ◽  
pp. 091105 ◽  
Author(s):  
Laurent Courbin ◽  
Howard A. Stone
Keyword(s):  
The Self ◽  

1996 ◽  
Vol 8 (9) ◽  
pp. S7-S7 ◽  
Author(s):  
Maarten A. Rutgers ◽  
Xiao-lun Wu ◽  
Walter I. Goldburg
Keyword(s):  

1994 ◽  
Vol 162 (2) ◽  
pp. 323-330 ◽  
Author(s):  
A.A. Sonin ◽  
A. Bonfillon ◽  
D. Langevin
Keyword(s):  

2021 ◽  
pp. 1475472X2110032
Author(s):  
Yongfei Mu ◽  
Jie Li ◽  
Wutao Lei ◽  
Daxiong Liao

The aerodynamic noise of landing gears have been widely studied as an important component of the airframe noise. During take-off and landing, there are doors, cavity and fuselage around the landing gear. The noise caused by these aircraft components will interfere with aerodynamic noise generated by the landing gear itself. Hence, paper proposes an Improved Delayed Detached Eddy Simulation (IDDES) method for the investigation of the flow field around a single fuselage nose landing gear (NLG) model and a fuselage nose landing gear model with doors, cavity and fuselage nose (NLG-DCN) respectively. The difference between the two flow fields were analyzed in detail to better understand the influence of these components around the aircraft’s landing gear, and it was found that there is a serious mixing phenomenon among the separated flow from the front doors, the unstable shear layer falling off the leading edge of the cavity and the wake of the main strut which directly leads to the enhancement of the noise levels. Furthermore, after the noise sound waves are reflected by the doors several times, an interference phenomenon is generated between the doors. This interference may be a reason why the tone excited in the cavity is suppressed.


Sign in / Sign up

Export Citation Format

Share Document