From rolling without slipping to sweet spots

2020 ◽  
Vol 58 (3) ◽  
pp. 218-219
Author(s):  
Yau-Jong Twu
Author(s):  
Ying Tang ◽  
Shihao Tan ◽  
Ruifei Wang ◽  
Hao Wang ◽  
Chunming Xia ◽  
...  

2000 ◽  
Author(s):  
B.S. Hart ◽  
R.A. Pearson ◽  
J.M. Herrin ◽  
T. Engler ◽  
R.L. Robinson

2021 ◽  
Author(s):  
Rick Schrynemeeckers

Abstract Current offshore hydrocarbon detection methods employ vessels to collect cores along transects over structures defined by seismic imaging which are then analyzed by standard geochemical methods. Due to the cost of core collection, the sample density over these structures is often insufficient to map hydrocarbon accumulation boundaries. Traditional offshore geochemical methods cannot define reservoir sweet spots (i.e. areas of enhanced porosity, pressure, or net pay thickness) or measure light oil or gas condensate in the C7 – C15 carbon range. Thus, conventional geochemical methods are limited in their ability to help optimize offshore field development production. The capability to attach ultrasensitive geochemical modules to Ocean Bottom Seismic (OBS) nodes provides a new capability to the industry which allows these modules to be deployed in very dense grid patterns that provide extensive coverage both on structure and off structure. Thus, both high resolution seismic data and high-resolution hydrocarbon data can be captured simultaneously. Field trials were performed in offshore Ghana. The trial was not intended to duplicate normal field operations, but rather provide a pilot study to assess the viability of passive hydrocarbon modules to function properly in real world conditions in deep waters at elevated pressures. Water depth for the pilot survey ranged from 1500 – 1700 meters. Positive thermogenic signatures were detected in the Gabon samples. A baseline (i.e. non-thermogenic) signature was also detected. The results indicated the positive signatures were thermogenic and could easily be differentiated from baseline or non-thermogenic signatures. The ability to deploy geochemical modules with OBS nodes for reoccurring surveys in repetitive locations provides the ability to map the movement of hydrocarbons over time as well as discern depletion affects (i.e. time lapse geochemistry). The combined technologies will also be able to: Identify compartmentalization, maximize production and profitability by mapping reservoir sweet spots (i.e. areas of higher porosity, pressure, & hydrocarbon richness), rank prospects, reduce risk by identifying poor prospectivity areas, accurately map hydrocarbon charge in pre-salt sequences, augment seismic data in highly thrusted and faulted areas.


2021 ◽  
Author(s):  
Tarun Grover ◽  
Jamie Stuart Andrews ◽  
Irfan Ahmed ◽  
Ibnu Hafidz Arief

Abstract Unconventional resource plays, herein referred to as source rock plays, have been able to significantly increase the supply of hydrocarbons to the world. However, majority of the companies developing these resource plays have struggled to generate consistent positive cash flows, even during periods of stable commodity prices and after successfully reducing the development costs. The fundamental reasons for poor financial performance can be attributed to various reasons, such as; rush to lease acreage and drill wells to hold acreage, delayed mapping of sweet spots, slow acknowledgement of high geological variability, spending significant capital in trial and errors to narrow down optimal combinations of well spacing and stimulation designs. The objective of this paper is to present a systematic integrated multidisciplinary analysis of several unconventional plays worldwide which, if used consistently, can lead to significantly improved economics. We present an analysis of several unconventional plays in the US and Argentina with fluid systems ranging from dry gas to black oil. We utilize the publicly available datasets of well stimulation and production data along with laboratory measured core data to evaluate the sweet spots, the measure of well productivity, and the variability in well productivity. We investigate the design parameters which show the strongest correlation to well productivity. This step allows us to normalize the well productivity in such a way that the underlying well productivity variability due to geology is extracted. We can thus identify the number of wells which should be drilled to establish geology driven productivity variability. Finally, we investigate the impact of well spacing on well productivity. The data indicates that, for any well, first year cumulative production is a robust measure of ultimate well productivity. The injected slurry volume shows the best correlation to the well productivity and "completion normalized" well productivity can be defined as first year cumulative production per barrel of injected slurry volume. However, if well spacing is smaller than the created hydraulic fracture network, the potential gain of well productivity is negated leading to poor economics. Normalized well productivity is log-normally distributed in any play due to log-normal distribution of permeability and the sweet spots will generally be defined by most permeable portions of the play. Normalized well productivity is shown to be independent of areal scale of any play. We show that in every play analyzed, typically 20-50 wells (with successful stimulation and production) are sufficient to extract the log-normal productivity distribution depending on play size and target intervals. We demonstrate that once the log-normal behavior is anticipated, creation of production profiles with p10-p50-p90 values is quite straightforward. The way the data analysis is presented can be easily replicated and utilized by any operator worldwide which can be useful in evaluation of unconventional resource play opportunities.


2021 ◽  
Author(s):  
Subrata Chakraborty ◽  
Monica Maria Mihai ◽  
Nacera Maache ◽  
Gabriela Salomia ◽  
Abdulla Al Blooshi ◽  
...  

Abstract In Abu Dhabi, the Mishrif Formation is developed in the eastern and western parts conformably above the Shilaif Formation and forms several commercial discoveries. The present study was carried out to understand the development of the Mishrif Formation over a large area in western onshore Abu Dhabi and to identify possible Mishrif sweet spots as future drilling locations. To achieve this objective, seismic mapping of various reflectors below, above, and within the Mishrif Formation was attempted. From drilled wells all the available wireline data and cores were studied. Detailed seismic sequence stratigraphic analysis was carried out to understand the evolution of the Mishrif Formation and places where the good porosity-permeability development and oil accumulation might have happened. The seismic characters of the Mishrif Formation in dry and successful wells were studied and were calibrated with well data. The Mishrif Formation was deposited during Late Cretaceous Cenomanian time. In the study area it has a gross thickness ranging from 532 to 1,269 ft as derived from the drilled wells; the thickness rapidly decreases eastward toward the shelf edge and approaching the Shilaif basin. The Mishrif was divided into three third-order sequences based on core observations from seven wells and log signatures from 25 wells. The bottom-most sequence Mishrif 1.0 was identified is the thickest unit but was also found dry. The next identified sequence Mishrif 2.0 was also dry. The next and the uppermost sequence identified as Mishrif 3.0 shows a thickness from 123 to 328 ft. All the tested oil-bearing intervals lie within this sequence. This sequence was further subdivided into three fourth-order sequences based on log and core signatures; namely, Mishrif 3.1, 3.2, and 3.3. In six selected seismic lines of 181 Line Km (LKM) cutting across the depositional axis, seismic sequence stratigraphic analysis was carried out. In those sections all the visible seismic reflectors were picked using a stratigraphic interpretation software. Reflector groups were made to identify lowstand systems tract, transgressive systems tract, maximum flooding surface, and highstand systems tract by tying with the observations of log and core at the wells and by seismic signature. Wheeler diagrams were generated in all these six sections to understand the lateral disposition of these events and locales of their development. Based on stratigraphic analysis, a zone with likely grainy porous facies development was identified in Mishrif 3.0. Paleotopography at the top of Mishrif was reconstructed to help delineate areas where sea-level fall generated leaching-related sweet spots. Analysis of measured permeability data identified the presence of local permeability baffles affecting the reservoir quality and hydrocarbon accumulation. This study helped to identify several drilling locations based on a generic understanding of the Mishrif Formation. Such stratigraphic techniques can be successfully applied in similar carbonate reservoirs to identify the prospect areas.


2021 ◽  
Author(s):  
Sheng Chen ◽  
Qingcai Zeng ◽  
Xiujiao Wang ◽  
Qing Yang ◽  
Chunmeng Dai ◽  
...  

Abstract Practices of marine shale gas exploration and development in south China have proved that formation overpressure is the main controlling factor of shale gas enrichment and an indicator of good preservation condition. Accurate prediction of formation pressure before drilling is necessary for drilling safety and important for sweet spots predicting and horizontal wells deploying. However, the existing prediction methods of formation pore pressures all have defects, the prediction accuracy unsatisfactory for shale gas development. By means of rock mechanics analysis and related formulas, we derived a formula for calculating formation pore pressures. Through regional rock physical analysis, we determined and optimized the relevant parameters in the formula, and established a new formation pressure prediction model considering P-wave velocity, S-wave velocity and density. Based on regional exploration wells and 3D seismic data, we carried out pre-stack seismic inversion to obtain high-precision P-wave velocity, S-wave velocity and density data volumes. We utilized the new formation pressure prediction model to predict the pressure and the spatial distribution of overpressure sweet spots. Then, we applied the measured pressure data of three new wells to verify the predicted formation pressure by seismic data. The result shows that the new method has a higher accuracy. This method is qualified for safe drilling and prediction of overpressure sweet spots for shale gas development, so it is worthy of promotion.


Author(s):  
Reinout Havinga ◽  
Havard Ostgaard

The use of barcodes for record keeping in botanic gardens has been pioneered before, but attempts have not always been successful. It has even been claimed that, for use in living collections, barcodes are altogether obsolete. This is difficult to imagine given the success of barcodes in almost any professional logistic or auto-ID application. We have tried to find the ‘sweet spots’ of barcode use and have implemented the technology at the Hortus Botanicus Amsterdam. Integrated with the list-making functionality in the collection management software, barcodes have proved to be an invaluable tool in improving the quality and accuracy of the inventory.


Sign in / Sign up

Export Citation Format

Share Document