Dynamic system control method

2010 ◽  
Vol 127 (5) ◽  
pp. 3291
Author(s):  
Neil Singer
2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


2013 ◽  
Vol 738 ◽  
pp. 272-275
Author(s):  
Dun Chen Lan

In the field of mechanical automation, intelligent industrial robot technology is an important branch in the research field of robot; it is always the hot spots of the world robot research, and it being used to get the application in the industry today. Robot experiment platform of PLC and motor control technology, it based on the control method used by the robot control system improvements to make it more perfect run more precise, reasonable. In the same time, the man-machine interface state run monitoring, to ensure the normal operation of the system. Improved control method of the improvement of the work efficiency, reduce the work of the workers a duplication degree have a significant effect, and the system control at the scene, especially PLC control has excellent control function and good cost performance .


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Ui-Jin Jung ◽  
Gyung-Jin Park ◽  
Sunil K. Agrawal

Control problems in dynamic systems require an optimal selection of input trajectories and system parameters. In this paper, a novel procedure for optimization of a linear dynamic system is proposed that simultaneously solves the parameter design problem and the optimal control problem using a specific system state transformation. Also, the proposed procedure includes structural design constraints within the control system. A direct optimal control method is also examined to compare it with the proposed method. The limitations and advantages of both methods are discussed in terms of the number of states and inputs. Consequently, linear dynamic system examples are optimized under various constraints and the merits of the proposed method are examined.


Author(s):  
S.N. Masaev

The purpose of the study was to determine the problem of control of a dynamic system of higher dimension. Relying on Leontev input-output balance, we formalized the dynamic system and synthesized its control. Within the research, we developed a mathematical model that combines different working objects that consume and release various resources. The value of the penalty for all nodes and objects is introduced into the matrix representation of the problem, taking into account various options for their interaction, i.e., the observation problem. A matrix representation of the planning task at each working object is formed. For the formed system, a control loop is created; the influencing parameters of the external environment are indicated. We calculated the system operational mode, taking into account the interaction of the nodes of objects with each other when the parameters of the external environment influence them. Findings of research show that in achieving a complex result, the system is inefficient without optimal planning and accounting for the matrix of penalties for the interaction of nodes and objects of the dynamic system with each other. In a specific example, for a dynamic system with a dimension of 4.8 million parameters, we estimated the control taking into account the penalty matrix, which made it possible to increase the inflow of additional resources from the outside by 2.4 times from 130 billion conv. units up to 310 conv. units in 5 years. Taking into account the maximum optimization of control in the nodes, an increase of 3.66 times in the inflow of additional resources was ensured --- from 200.46 to 726.62 billion rubles


2018 ◽  
Vol 232 ◽  
pp. 04008
Author(s):  
Xiao-Jun Zhang

UAV avionics system is prone to saturation distortion under unsteady conditions, so anti-saturation control is needed. A control method of UAV avionics system based on anti-saturation feedback compensation is proposed. The anti-saturation control process of UAV avionics system is a multi-objective optimization process with multi-variables. The constrained parameter model of UAV avionics system control is constructed. Electromagnetic loss, torque, output power and other parameters are taken as constraint indexes, the original control information of UAV avionics system is treated with self-stabilization, the equivalent control circuit is designed, and the magnetic resonance transmission mode of avionics system is analyzed. An anti-saturation feedback tracking control method is used for steady-state control of the output voltage of the avionics system. The error compensation function is constructed to adjust the output adaptive parameters of the avionics system and the static anti-saturation compensator is constructed to compensate the power gain. The yaw error and the output steady-state error of the avionics system are reduced. The simulation results show that the proposed method has better output stability, lower output error, better real-time performance and better linear auto-disturbance rejection control performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xia Lu

Finance is the core of modern economy. The security and stability of the financial system is the key to stable economic and social development. During the operation of the financial system, financial chaos such as the severe turbulence of the financial market and the financial crisis occurred due to deterministic instability, which brought a great negative impact on economic growth and social stability. For the financial chaotic system, an intermittent feedback controller is designed in this paper. By adjusting the controller parameters, the financial system can be controlled from chaotic to periodic evolution. First, the dynamic equations and controllers of the financial system are analyzed and the range of values of the controller parameters is theoretically obtained. Then, the influence of parameters on the system is studied, and the feasibility of the proposed method is proved by numerical simulation. Finally, the practical significance of the controller on the macrocontrol of the financial crisis is discussed. It is theoretically proven that when the financial crisis comes, the financial system can be stabilized more quickly through appropriate control methods.


2018 ◽  
Vol 176 ◽  
pp. 01013
Author(s):  
Yeqin Wang ◽  
Yuan Zhang ◽  
Yiguo Deng ◽  
Lijiao Wei ◽  
Shengli Liu

In this paper, the quantitative control method and system control process of the natural rubber forest quantitative fertilization system are introduced on the basis of the demand for the quantitative fertilization of natural rubber forest and the application process of the rubber forest fertilizing machine. The selection of PLC, frequency converter type selection and software design process are described in detail.


Sign in / Sign up

Export Citation Format

Share Document