Reflection and transmission coefficients in fluid‐saturated porous media

1992 ◽  
Vol 91 (4) ◽  
pp. 1911-1923 ◽  
Author(s):  
Juan E. Santos ◽  
Jaime M. Corbero ◽  
Claudia L. Ravazzoli ◽  
Jeffrey L. Hensley
1998 ◽  
Vol 88 (5) ◽  
pp. 1289-1299 ◽  
Author(s):  
Jun Yang ◽  
Tadanobu Sato

Abstract Wave propagation in saturated porous media involves complicated couplings between the solid skeleton and pore fluid. In particular, viscous coupling plays a key role because in general it makes wave propagation dispersive and dissipative. Although the importance of the viscous coupling in wave propagation in an unbounded saturated medium was recognized, the knowledge of its effect on the reflection and transmission from a saturated porous boundary is limited. A detailed investigation is therefore carried out in this article on the influence of viscous coupling in the reflection and transmission at an interface between saturated porous media and ordinary elastic media. The interface is considered to be either permeable or impermeable to include the effect of hydraulic boundary condition. In particular, the dependence of viscous coupling effect on the hydraulic condition at the interface is studied in this article. The variations of the reflection and transmission coefficients with the angle of incidence as well as the frequency for different values of viscous coupling are computed and compared for permeable interface and impermeable interface. In addition, the seismic reflection in two extreme cases of viscous coupling, that is, null viscous coupling and infinite viscous coupling, is discussed. The results indicate that the effect of viscous coupling is complicated; it depends strongly on the hydraulic condition at the interface as well as the frequency of the incident wave. Additionally, it depends upon the angle of incidence.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chongbin Zhao ◽  
B.E. Hobbs ◽  
Alison Ord

PurposeThe objective of this paper is to develop a semi-analytical finite element method for solving chemical dissolution-front instability problems in fluid-saturated porous media.Design/methodology/approachThe porosity, horizontal and vertical components of the pore-fluid velocity and solute concentration are selected as four fundamental unknown variables for describing chemical dissolution-front instability problems in fluid-saturated porous media. To avoid the use of numerical integration, analytical solutions for the property matrices of a rectangular element are precisely derived in a purely mathematical manner. This means that the proposed finite element method is a kind of semi-analytical method. The column pivot element solver is used to solve the resulting finite element equations of the chemical dissolution-front instability problem.FindingsThe direct use of horizontal and vertical components of the pore-fluid velocity as fundamental unknown variables can improve the accuracy of the related numerical solution. The column pivot element solver is useful for solving the finite element equations of a chemical dissolution-front instability problem. The proposed semi-analytical finite element method can produce highly accurate numerical solutions for simulating chemical dissolution-front instability problems in fluid-saturated porous media.Originality/valueAnalytical solutions for the property matrices of a rectangular element are precisely derived for solving chemical dissolution-front instability problems in fluid-saturated porous media. The proposed semi-analytical finite element method provides a useful way for understanding the underlying dynamic mechanisms of the washing land method involved in the contaminated land remediation.


Sign in / Sign up

Export Citation Format

Share Document