A global survey of the impact on acoustic propagation of deep water warm core ocean eddies

1994 ◽  
Vol 95 (5) ◽  
pp. 2880-2880 ◽  
Author(s):  
David G. Browning ◽  
Raymond J. Christian ◽  
Linda S. Petitpas
Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 967-975 ◽  
Author(s):  
A. J. G. Nurser ◽  
S. Bacon

Abstract. The first (and second) baroclinic deformation (or Rossby) radii are presented north of ~60° N, focusing on deep basins and shelf seas in the high Arctic Ocean, the Nordic seas, Baffin Bay, Hudson Bay and the Canadian Arctic Archipelago, derived from climatological ocean data. In the high Arctic Ocean, the first Rossby radius increases from ~5 km in the Nansen Basin to ~15 km in the central Canadian Basin. In the shelf seas and elsewhere, values are low (1–7 km), reflecting weak density stratification, shallow water, or both. Seasonality strongly impacts the Rossby radius only in shallow seas, where winter homogenization of the water column can reduce it to below 1 km. Greater detail is seen in the output from an ice–ocean general circulation model, of higher resolution than the climatology. To assess the impact of secular variability, 10 years (2003–2012) of hydrographic stations along 150° W in the Beaufort Gyre are also analysed. The first-mode Rossby radius increases over this period by ~20%. Finally, we review the observed scales of Arctic Ocean eddies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tim R. McHargue ◽  
David M. Hodgson ◽  
Eitan Shelef

Lobate deposits in deep-water settings are diverse in their depositional architecture but this diversity is under-represented in the literature. Diverse architectures result from multiple factors including source material, basin margin physiography, transport pathway, and depositional setting. In this contribution, we emphasize the impact of differing source materials related to differing delivery mechanisms and their influence on architecture, which is an important consideration in source-to-sink studies. Three well imaged subsurface lobate deposits are described that display three markedly different morphologies. All three lobate examples, two from intraslope settings offshore Nigeria and one from a basin-floor setting offshore Indonesia, are buried by less than 150 m of muddy sediment and are imaged with high resolution 3D reflection seismic data of similar quality and resolution. Distinctively different distributary channel patterns are present in two of the examples, and no comparable distributaries are imaged in a third example. Distributary channels are emphasized because they are objectively recognized and because they often represent elements of elevated fluid content within buried lobate deposits and thus influence permeability structure. We speculate that the different distributary channel patterns documented here resulted from different processes linked to source materials: 1) a lobate deposit that is pervasively channelized by many distributaries that have branched at numerous points is interpreted to result from comparatively mud-rich, stratified, turbulent flows; 2) an absence of distributaries in a lobate deposit is interpreted to result from collapse of mud-poor, turbulent flows remobilized from littoral drift; and 3) a lobate deposit with only a few, long, straight distributaries with few branching points is interpreted to be dominated by highly viscous flows (i.e., debris flows). We propose a conceptual model that illustrates the relationship between the proportion of mud in contributing flows and the relative size and runout distance of lobate deposits. We conclude that reconciling 3D seismic morphologies with outcrop observations of channels, scours, and amalgamation zones, and simple application of hierarchical schemes, is problematic. Furthermore, when characterizing unconfined deep-water deposits in the subsurface, multiple models with significant differences in predicted permeability structure should be considered.


2020 ◽  
Author(s):  
Cornelis De Jong ◽  
Ali Farhoudian ◽  
Mehrnoosh Vahidi ◽  
Mohsen Ebrahimi ◽  
Hamed Ekhtiari ◽  
...  

Abstract Migrants and refugees are considered vulnerable to mental health problems and substance use disorders; and may be particularly affected by service disruptions associated with the COVID-19 pandemic The International Society of Addiction Medicine (ISAM) ran a multi-phased global survey among clinicians and health professional that are actively working in the field of addiction medicine to investigate the impact of the COVID-19 pandemic on substance use and related services. In March 2020, the first month after the announcement of the pandemic by the World Health Organization, 177 informants from 77 countries took part in the global survey, and only 12.9% of them reported their countries’ substance use treatment and harm reduction services for the migrants and refugees with substance use disorders continued as usual. In May 2020, 11.7% of respondents of the second phase reported that the services for refugees and migrants improved in comparison to March 2020; 11.7% reported that these services in their country discontinued. Results suggest that refugee and migrants access to treatment and harm reduction services has been reduced as a result of COVID-19. It can be concluded that it is crucial to improve the visibility of migrants’ needs and exploit appropriate interventions for those with substance use disorders.


2018 ◽  
Vol 48 (2) ◽  
pp. 329-341 ◽  
Author(s):  
Xinan Liu

AbstractThe effects of wind on the impact of a single water drop on a deep-water surface are studied experimentally in a wind tunnel. Experiments are performed by varying impacting drop diameters, ranging from 2.5 to 4.1 mm and wind speeds up to 6.7 m s−1. The sequence of splashing events that occurred during drop impacts is recorded with a backlit, cinematic shadowgraph technique. The experimental results show that for low wind speeds, an asymmetrical crown forms on the leeward of the periphery of the colliding region after the drop hits the water surface, while a wave swell forms on the windward. Secondary droplets are generated from the crown rim. For high wind speeds with large drop diameters, ligaments are generated from the crown rim on the leeward of the drop impact site. The ligaments grow, coalesce, and fragment into secondary droplets. It is found that both the drag force and surface tension play important roles in the evolution process of the ligaments. The nondimensional K number (K = WeOh−0.4, where We is the Webber number and Oh is the Ohnesorge number) is used to describe the splashing-deposition limit of drop impact. The threshold value of this K number changes with the wind velocity and/or drop impact angle.


2019 ◽  
Vol 11 (8) ◽  
pp. 938 ◽  
Author(s):  
Jue Ning ◽  
Qing Xu ◽  
Han Zhang ◽  
Tao Wang ◽  
Kaiguo Fan

By using multiplatform satellite datasets, Argo observations and numerical model data, the upper ocean thermodynamic responses to Super Typhoon Soudelor are investigated with a focus on the impact of an ocean cyclonic eddy (CE). In addition to the significant surface cooling inside the CE region, an abnormally large rising in subsurface temperature is observed. The maximum warming and heat content change (HCC) reach up to 4.37 °C and 1.73 GJ/m2, respectively. Moreover, the HCC is an order of magnitude larger than that calculated from statistical analysis of Argo profile data in the previous study which only considered the effects caused by typhoons. Meanwhile, the subsurface warming outside the CE is merely 1.74 °C with HCC of 0.39 GJ/m2. Previous studies suggested that typhoon-induced vertical mixing is the primary factor causing subsurface warming but these studies ignored an important mechanism related to the horizontal advection caused by the rotation and movement of mesoscale eddies. This study documents that the eddy-induced horizontal advection has a great impact on the upper ocean responses to typhoons. Therefore, the influence of eddies should be considered when studying the responses of upper ocean to typhoons with pre-existing mesoscale eddies.


Author(s):  
Guanyu Hu ◽  
Chaojun Huang ◽  
Fengjie Yin ◽  
Mark Cerkovnik ◽  
Guangqiang Yang

Abstract The Flexible joint is one of the most widely used hang-off systems for deep water catenary riser for its large rotation and load bearing capacity. The fatigue performance of riser hang-off region and fatigue load on the flexible joint highly depend on the rotational stiffness of the flexible joint. Thus, modelling the flexible joint stiffness to accurately simulate the behavior under cyclic bending cycles is critical in global riser fatigue analysis. The load-displacement relationship of a flexible joint typically follows a nonlinear curve, and it shows hysteresis behavior when subject to cyclic bending cycles. However, in current industry practice, the flexible joint stiffness is modelled either as a nonlinear curve or simplified as a fixed value. These simplified methods sometimes can lead to unconservative or over conservative results in riser design. Modelling the flexible joint stiffness in an accurate approach becomes more important especially when the riser fatigue is critical at the hang-off region. In addition, the design of flexible joint will also be impacted by the fatigue load extracted from global fatigue analysis, which is also largely affected by the flexible joint stiffness modelling method. Thus, modelling a flexible joint by accounting for the nonlinear hysteretic stiffness is recommended. This paper compares the different modelling methodologies of the flexible joint for catenary riser hang-off and presents the impact on fatigue performance considering hysteretic behavior. This study considers the effects of wave amplitude and hosting vessel offset. A case study is also presented on the application of all the modelling methods on fatigue performance of an SCR in the Gulf of Mexico. The fatigue behavior is compared for the different modelling methods considering long term wave motion and platform offsets. The impact on the results from different types of hosting platform is also discussed.


Author(s):  
Mayank Lal ◽  
Feng Wang ◽  
Xiaohua Lu ◽  
Abhilash Sebastian

Abstract Steel Lazy wave risers are being increasingly used for deep water applications due to better strength and fatigue performance in the touchdown zone compared to steel catenary risers. Several parameters govern the design of steel lazy wave risers including the length of the catenary from hang-off to start of buoyancy section and the length of the buoyancy section. In this paper, a parametric study is performed to investigate the trends in strength and fatigue performance of steel lazy wave risers with change in configuration parameters. A normative cost assessment is also performed to show the impact of these design variables on overall cost of the system. Dynamic analysis is performed to check the change in strength and fatigue performance of steel lazy wave risers as the configuration parameters are changed. The results from the parametric study will assist in designing steel lazy wave risers which satisfy the strength and fatigue design criteria.


2015 ◽  
Vol 138 (3) ◽  
pp. 1842-1842
Author(s):  
Peter F. Worcester

Sign in / Sign up

Export Citation Format

Share Document