Two-dimensional modeling of sound scattering with corrective smoothed particle method

2015 ◽  
Vol 137 (4) ◽  
pp. 2213-2213
Author(s):  
Xu Li ◽  
Tao Zhang ◽  
YongOu Zhang
Author(s):  
Yong Ou Zhang ◽  
Xu Li ◽  
Tao Zhang

Meshfree particle method, which is always regarded as a pure Lagrangian approach, is easily represented complicated domain topologies, moving boundaries, and multiphase media. Solving acoustic problems with the mesfree particle method forms a branch of the acoustic wave modeling field, namely, particle-based computational acoustics (PCA). The aim of this paper is to improve the accuracy of using the PCA method to solve two-dimensional acoustic problems, and realize the particle representation with a hybrid meshfree and finite-difference time-domain (FDTD) method for acoustic boundary conditions at both the plane and curved surface. As a widely used Lagrangian meshfree method, the smoothed particle hydrodynamics (SPH) based on the support domain and the kernel function has developed rapidly in recent years. The traditional SPH method is easily implements parallel processing and has been applied in sound wave simulation. As a corrective method with higher accuracy than SPH, the acoustic propagation and scattering in the time domain is simulated with the corrective smoothed particle method (CSPM). Moreover, a hybrid meshfree-FDTD boundary treatment technique is utilized to represent different acoustic boundaries in the Lagrangian approach. In this boundary treatment technique, the parameter value of virtual particles is obtained with the FDTD method, which concerns truncation errors based on the Tayler series expansion. Soft, rigid, and Mur’s absorbing boundary conditions are developed to simulate sound waves in finite and infinite domain. Results of modeling acoustic propagation and scattering show that CSPM is accurate and convergence with exact solutions, and different acoustic boundaries are validated to be effective in the computation.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 49
Author(s):  
Zheng Yuan ◽  
Jin Jiang ◽  
Jun Zang ◽  
Qihu Sheng ◽  
Ke Sun ◽  
...  

In the array design of the vertical axis wind turbines (VAWT), the wake effect of the upstream VAWT on the downstream VAWT needs to be considered. In order to simulate the velocity distribution of a VAWT wake rapidly, a new two-dimensional numerical method is proposed, which can make the array design easier and faster. In this new approach, the finite vortex method and vortex particle method are combined to simulate the generation and evolution of the vortex, respectively, the fast multipole method (FMM) is used to accelerate the calculation. Based on a characteristic of the VAWT wake, that is, the velocity distribution can be fitted into a power-law function, a new correction model is introduced to correct the three-dimensional effect of the VAWT wake. Finally, the simulation results can be approximated to the published experimental results in the first-order. As a new numerical method to simulate the complex VAWT wake, this paper proves the feasibility of the method and makes a preliminary validation. This method is not used to simulate the complex three-dimensional turbulent evolution but to simulate the velocity distribution quickly and relatively accurately, which meets the requirement for rapid simulation in the preliminary array design.


2012 ◽  
Vol 57 (12) ◽  
pp. 4055-4073
Author(s):  
Hani Eskandari ◽  
Orcun Goksel ◽  
Septimiu E Salcudean ◽  
Robert Rohling

2001 ◽  
Vol 188 (1) ◽  
pp. 251-254 ◽  
Author(s):  
F. Sacconi ◽  
A. Di Carlo ◽  
P. Lugli ◽  
H. Morko�

Sign in / Sign up

Export Citation Format

Share Document