scholarly journals Nutrition for Ultramarathon Running: Trail, Track, and Road

Author(s):  
Ricardo J.S. Costa ◽  
Beat Knechtle ◽  
Mark Tarnopolsky ◽  
Martin D. Hoffman

Ultramarathon running events and participation numbers have increased progressively over the past three decades. Besides the exertion of prolonged running with or without a loaded pack, such events are often associated with challenging topography, environmental conditions, acute transient lifestyle discomforts, and/or event-related health complications. These factors create a scenario for greater nutritional needs, while predisposing ultramarathon runners to multiple nutritional intake barriers. The current review aims to explore the physiological and nutritional demands of ultramarathon running and provide general guidance on nutritional requirements for ultramarathon training and competition, including aspects of race nutrition logistics. Research outcomes suggest that daily dietary carbohydrates (up to 12 g·kg−1·day−1) and multiple-transportable carbohydrate intake (∼90 g·hr−1 for running distances ≥3 hr) during exercise support endurance training adaptations and enhance real-time endurance performance. Whether these intake rates are tolerable during ultramarathon competition is questionable from a practical and gastrointestinal perspective. Dietary protocols, such as glycogen manipulation or low-carbohydrate high-fat diets, are currently popular among ultramarathon runners. Despite the latter dietary manipulation showing increased total fat oxidation rates during submaximal exercise, the role in enhancing ultramarathon running performance is currently not supported. Ultramarathon runners may develop varying degrees of both hypohydration and hyperhydration (with accompanying exercise-associated hyponatremia), dependent on event duration, and environmental conditions. To avoid these two extremes, euhydration can generally be maintained through “drinking to thirst.” A well practiced and individualized nutrition strategy is required to optimize training and competition performance in ultramarathon running events, whether they are single stage or multistage.

2010 ◽  
Vol 20 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Jane A. Rutherford ◽  
Lawrence L. Spriet ◽  
Trent Stellingwerff

This study examined whether acute taurine (T) ingestion before prolonged cycling would improve time-trial (TT) performance and alter whole-body fuel utilization compared with a control (CON) trial and a placebo (PL) trial in which participants were told they received taurine but did not. Eleven endurance-trained male cyclists (27.2 ± 1.5 yr, 74.3 ± 2.3 kg, 59.9 ± 2.3 ml · kg−1 · min−1; M ± SEM) completed 3 trials in a randomized, crossover, blinded design in which they consumed a noncaloric sweetened beverage with either 1.66 g of T or nothing added (CON, PL) 1 hr before exercise. Participants then cycled at 66.5% ± 1.9% VO2max for 90 min followed immediately by a TT (doing 5 kJ of work/kg body mass as fast as possible). Data on fluid administration, expired gas, heart rate, and ratings of perceived exertion were collected at 15-min intervals during the 90-min cycling ride, but there were no differences recorded between trials. There was no difference in TT performance between any of the 3 trials (1,500 ± 87 s). Average carbohydrate (T 2.73 ± 0.21, CON 2.88 ± 0.19, PL 2.89 ± 0.20 g/min) and fat (T 0.45 ± 0.05, CON 0.39 ± 0.04, PL 0.39 ± 0.05 g/min) oxidation rates were unaffected by T supplementation. T ingestion resulted in a 16% increase (5 g, ~84 kJ; p < .05) in total fat oxidation over the 90-min exercise period compared with CON and PL. The acute ingestion of 1.66 g of T before exercise did not enhance TT performance but did result in a small but significant increase in fat oxidation during submaximal cycling in endurance-trained cyclists.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 491
Author(s):  
Aslı Devrim-Lanpir ◽  
Lee Hill ◽  
Beat Knechtle

Endurance athletes need a regular and well-detailed nutrition program in order to fill their energy stores before training/racing, to provide nutritional support that will allow them to endure the harsh conditions during training/race, and to provide effective recovery after training/racing. Since exercise-related gastrointestinal symptoms can significantly affect performance, they also need to develop strategies to address these issues. All these factors force endurance athletes to constantly seek a better nutritional strategy. Therefore, several new dietary approaches have gained interest among endurance athletes in recent decades. This review provides a current perspective to five popular diet approaches: (a) vegetarian diets, (b) high-fat diets, (c) intermittent fasting diets, (d) gluten-free diet, and (e) low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diets. We reviewed scientific studies published from 1983 to January 2021 investigating the impact of these popular diets on the endurance performance and health aspects of endurance athletes. We also discuss all the beneficial and harmful aspects of these diets, and offer key suggestions for endurance athletes to consider when following these diets.


2015 ◽  
Vol 162 (5) ◽  
pp. 392
Author(s):  
Murray Skeaff ◽  
Jim Mann ◽  
Lisa Te Morenga ◽  
Rachael McLean
Keyword(s):  
Low Fat ◽  

2015 ◽  
Vol 162 (5) ◽  
pp. 391
Author(s):  
Alberto Donzelli ◽  
Alessandra Lafranconi
Keyword(s):  
Low Fat ◽  

2018 ◽  
Vol 118 (10) ◽  
pp. A126
Author(s):  
L. Ross ◽  
J. Musial ◽  
R. Hay ◽  
A. Cawte ◽  
D. McDermid ◽  
...  

2006 ◽  
Vol 2 (3) ◽  
pp. 136-140
Author(s):  
Vasundara Venkateswaran ◽  
Ahmed Q. Haddad ◽  
Laurence H. Klotz ◽  
Rob Nam ◽  
Neil E. Fleshner

Author(s):  
Philo U. Saunders ◽  
Laura A. Garvican-Lewis ◽  
Robert F. Chapman ◽  
Julien D. Périard

High-level athletes are always looking at ways to maximize training adaptations for competition performance, and using altered environmental conditions to achieve this outcome has become increasingly popular by elite athletes. Furthermore, a series of potential nutrition and hydration interventions may also optimize the adaptation to altered environments. Altitude training was first used to prepare for competition at altitude, and it still is today; however, more often now, elite athletes embark on a series of altitude training camps to try to improve sea-level performance. Similarly, the use of heat acclimation/acclimatization to optimize performance in hot/humid environmental conditions is a common practice by high-level athletes and is well supported in the scientific literature. More recently, the use of heat training to improve exercise capacity in temperate environments has been investigated and appears to have positive outcomes. This consensus statement will detail the use of both heat and altitude training interventions to optimize performance capacities in elite athletes in both normal environmental conditions and extreme conditions (hot and/or high), with a focus on the importance of nutritional strategies required in these extreme environmental conditions to maximize adaptations conducive to competitive performance enhancement.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3822
Author(s):  
Adam Włodarczyk ◽  
Wiesław Jerzy Cubała ◽  
Aleksandra Wielewicka

Anxiety disorders comprise persistent, disabling conditions that are distributed across the globe, and are associated with the high medical and socioeconomic burden of the disease. Within the array of biopsychosocial treatment modalities—including monoaminergic antidepressants, benzodiazepines, and CBT—there is an unmet need for the effective treatment of anxiety disorders resulting in full remission and recovery. Nutritional intervention may be hypothesized as a promising treatment strategy; in particular, it facilitates relapse prevention. Low-carbohydrate high-fat diets (LCHF) may provide a rewarding outcome for some anxiety disorders; more research is needed before this regimen can be recommended to patients on a daily basis, but the evidence mentioned in this paper should encourage researchers and clinicians to consider LCHF as a piece of advice somewhere between psychotherapy and pharmacology, or as an add-on to those two.


2019 ◽  
Vol 59 (6) ◽  
pp. 2771-2782 ◽  
Author(s):  
Chaitong Churuangsuk ◽  
Michael E.J. Lean ◽  
Emilie Combet

Abstract Purpose Evidence of low-carbohydrate, high-fat diets (LCHF) for type 2 diabetes (T2DM) prevention is scarce. We investigated how carbohydrate intake relates to HbA1c and T2DM prevalence in a nationally representative survey dataset. Methods We analyzed dietary information (4-day food diaries) from 3234 individuals aged ≥ 16 years, in eight waves of the UK National Diet and Nutrition Survey (2008–2016). We calculated LCHF scores (0–20, higher score indicating lower  %food energy from carbohydrate, with reciprocal higher contribution from fat) and UK Dietary Reference Value (DRV) scores (0–16, based on UK dietary recommendations). Associations between macronutrients and diet scores and diabetes prevalence were analyzed (in the whole sample) using multivariate logistic regression. Among those without diabetes, analyses between exposures and %HbA1c (continuous) were analyzed using multivariate linear regression. All analyses were adjusted for age, sex, body mass index, ethnicity, smoking status, total energy intake, socioeconomic status and survey years. Results In the overall study sample, 194 (6.0%) had diabetes. Mean intake was 48.0%E for carbohydrates, and 34.9%E for total fat. Every 5%E decrease in carbohydrate, and every 5%E increase in fat, was associated with 12% (95% CI 0.78–0.99; P = 0.03) and 17% (95% CI 1.02–1.33; P = 0.02) higher odds of diabetes, respectively. Each two-point increase in LCHF score is related to 8% (95% CI 1.02–1.14; P = 0.006) higher odds of diabetes, while there was no evidence for association between DRV score and diabetes. Among the participants without diagnosed diabetes (n = 3130), every 5%E decrease in carbohydrate was associated with higher %HbA1c by + 0.016% (95% CI 0.004–0.029; P = 0.012), whereas every 5%E increase in fat was associated with higher  %HbA1c by + 0.029% (95% CI 0.015–0.043; P < 0.001). Each two-point increase in LCHF score is related to higher  %HbA1c by + 0.010% (0.1 mmol/mol), while each two-point increase in the DRV score is related to lower  %HbA1c by − 0.023% (0.23 mmol/mol). Conclusions Lower carbohydrate and higher fat intakes were associated with higher HbA1c and greater odds of having diabetes. These data do not support low(er) carbohydrate diets for diabetes prevention.


Sign in / Sign up

Export Citation Format

Share Document