Prior Heavy-Intensity Exercise’s Enhancement of Oxygen-Uptake Kinetics and Short-Term High-Intensity Exercise Performance Independent of Aerobic-Training Status

2015 ◽  
Vol 10 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Renato A.C. Caritá ◽  
Camila C. Greco ◽  
Benedito S. Denadai

Prior high-intensity exercise can improve exercise performance during severe-intensity exercise. These positive alterations have been attributed, at least in part, to enhancement of overall oxygen-uptake (VO2) kinetics.Purpose:To determine the effects of prior heavy-intensity exercise on VO2 kinetics and short-term high-intensity exercise performance in individuals with different aerobic-training statuses.Methods:Fifteen active subjects (UT; VO2max = 43.8 ± 6.3 mL · kg−1 · min−1) and 10 well-trained endurance cyclists (T; VO2max = 66.7 ± 6.7 mL · kg−1 · min−1) performed the following protocols: an incremental test to determine lactate threshold and VO2max, 4 maximal constant-load tests to estimate critical power, and two 3-min bouts of cycle exercise, involving 2 min of constant-work-rate exercise at severe intensity followed by a 1-min all-out sprint test. This trial was performed without prior intervention and 10 min after prior heavy-intensity exercise (ie, 6 min at 90% critical power).Results:The mean response time of VO2 was shortened after prior exercise for both UT (30.7 ± 9.2 vs 24.1 ± 7.2 s) and T (31.8 ± 5.2 vs 25.4 ± 4.3 s), but no group-by-condition interaction was detected. The end-sprint performance (ie, mean power output) was improved in both groups (UT ~4.7%, T ~2.0%; P < .05) by prior exercise.Conclusion:The effect of prior heavy-intensity exercise on overall VO2 kinetics and short-term high-intensity exercise performance is independent of aerobic-training status.

2012 ◽  
Vol 37 (4) ◽  
pp. 736-743 ◽  
Author(s):  
Camila Coelho Greco ◽  
Renato Aparecido Corrêa Caritá ◽  
Jeanne Dekerle ◽  
Benedito Sérgio Denadai

This study aimed at assessing the sensitivity of both maximal lactate steady state (MLSS) and critical power (CP) in populations of different aerobic training status to ascertain whether CP is as sensitive as MLSS to a change in aerobic fitness. Seven untrained subjects (UT) (maximal oxygen uptake = 37.4 ± 6.5 mL·kg–1·min–1) and 7 endurance cyclists (T) (maximal oxygen uptake = 62.4 ± 5.2 mL·kg–1·min–1) performed an incremental test for maximal oxygen uptake estimation and several constant work rate tests for MLSS and CP determination. MLSS, whether expressed in mL·kg–1·min–1 (T: 51.8 ± 5.7 vs. UT: 29.0 ± 6.1) or % maximal oxygen uptake (T: 83.1 ± 6.8 vs. UT: 77.1 ± 4.5), was significantly higher in the T group. CP expressed in mL·kg–1·min–1 (T: 56.8 ± 5.1 vs. UT: 33.1 ± 6.3) was significantly higher in the T group as well but no difference was found when expressed in % maximal oxygen uptake (T: 91.1 ± 4.8 vs. UT: 88.3 ± 3.6). Whether expressed in absolute or relative values, MLSS is sensitive to aerobic training status and a good measure of aerobic endurance. Conversely, the improvement in CP with years of training is proportional to those of maximal oxygen uptake. Thus, CP might be less sensitive than MLSS for depicting an enhancement in aerobic fitness.


2003 ◽  
Vol 94 (6) ◽  
pp. 2135-2144 ◽  
Author(s):  
Murli Manohar ◽  
Thomas E. Goetz ◽  
Aslam S. Hassan

It is reported that preexercise hyperhydration caused arterial O2 tension of horses performing submaximal exercise to decrease further by 15 Torr (Sosa-Leon L, Hodgson DR, Evans DL, Ray SP, Carlson GP, and Rose RJ. Equine Vet J Suppl 34: 425–429, 2002). Because hydration status is important to optimal athletic performance and thermoregulation during exercise, the present study examined whether preexercise induction of hypervolemia would similarly accentuate the arterial hypoxemia in Thoroughbreds performing short-term high-intensity exercise. Two sets of experiments (namely, control and hypervolemia studies) were carried out on seven healthy, exercise-trained Thoroughbred horses in random order, 7 days apart. In resting horses, an 18.0 ± 1.8% increase in plasma volume was induced with NaCl (0.30–0.45 g/kg dissolved in 1,500 ml H2O) administered via a nasogastric tube, 285–290 min preexercise. Blood-gas and pH measurements as well as concentrations of plasma protein, hemoglobin, and blood lactate were determined at rest and during incremental exercise leading to maximal exertion (14 m/s on a 3.5% uphill grade) that induced pulmonary hemorrhage in all horses in both treatments. In both treatments, significant arterial hypoxemia, desaturation of hemoglobin, hypercapnia, acidosis, and hyperthermia developed during maximal exercise, but statistically significant differences between treatments were not found. Thus preexercise 18% expansion of plasma volume failed to significantly affect the development and/or severity of arterial hypoxemia in Thoroughbreds performing maximal exercise. Although blood lactate concentration and arterial pH were unaffected, hemodilution caused in this manner resulted in a significant ( P < 0.01) attenuation of the exercise-induced expansion of the arterial-to-mixed venous blood O2 content gradient.


2016 ◽  
Vol 7 ◽  
Author(s):  
James G. Hopker ◽  
Giuseppe Caporaso ◽  
Andrea Azzalin ◽  
Roger Carpenter ◽  
Samuele M. Marcora

2013 ◽  
Vol 305 (9) ◽  
pp. R1085-R1092 ◽  
Author(s):  
Weerapong Chidnok ◽  
Fred J. DiMenna ◽  
Jonathan Fulford ◽  
Stephen J. Bailey ◽  
Philip F. Skiba ◽  
...  

We investigated the responses of intramuscular phosphate-linked metabolites and pH (as assessed by 31P-MRS) during intermittent high-intensity exercise protocols performed with different recovery-interval durations. Following estimation of the parameters of the power-duration relationship, i.e., the critical power ( CP) and curvature constant ( W′), for severe-intensity constant-power exercise, nine male subjects completed three intermittent exercise protocols to exhaustion where periods of high-intensity constant-power exercise (60 s) were separated by different durations of passive recovery (18 s, 30 s and 48 s). The tolerable duration of exercise was 304 ± 68 s, 516 ± 142 s, and 847 ± 240 s for the 18-s, 30-s, and 48-s recovery protocols, respectively ( P < 0.05). The work done > CP ( W> CP) was significantly greater for all intermittent protocols compared with the subjects' W′, and this difference became progressively greater as recovery-interval duration was increased. The restoration of intramuscular phosphocreatine concentration during recovery was greatest, intermediate, and least for 48 s, 30 s, and 18 s of recovery, respectively ( P < 0.05). The W> CP in excess of W′ increased with greater durations of recovery, and this was correlated with the mean magnitude of muscle phosphocreatine reconstitution between work intervals ( r = 0.61; P < 0.01). The results of this study show that during intermittent high-intensity exercise, recovery intervals allow intramuscular homeostasis to be restored, with the degree of restoration being related to the duration of the recovery interval. Consequently, and consistent with the intermittent CP model, the ability to perform W> CP during intermittent high-intensity exercise and, therefore, exercise tolerance, increases when recovery-interval duration is extended.


Sign in / Sign up

Export Citation Format

Share Document